首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   852篇
  免费   154篇
  国内免费   272篇
测绘学   41篇
大气科学   210篇
地球物理   222篇
地质学   497篇
海洋学   108篇
天文学   44篇
综合类   63篇
自然地理   93篇
  2024年   6篇
  2023年   13篇
  2022年   31篇
  2021年   37篇
  2020年   32篇
  2019年   47篇
  2018年   42篇
  2017年   43篇
  2016年   38篇
  2015年   40篇
  2014年   53篇
  2013年   43篇
  2012年   55篇
  2011年   59篇
  2010年   58篇
  2009年   58篇
  2008年   54篇
  2007年   52篇
  2006年   32篇
  2005年   31篇
  2004年   22篇
  2003年   20篇
  2002年   23篇
  2001年   33篇
  2000年   31篇
  1999年   38篇
  1998年   43篇
  1997年   38篇
  1996年   26篇
  1995年   23篇
  1994年   23篇
  1993年   20篇
  1992年   30篇
  1991年   20篇
  1990年   13篇
  1989年   10篇
  1988年   16篇
  1987年   8篇
  1986年   3篇
  1985年   4篇
  1983年   1篇
  1982年   3篇
  1981年   2篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1958年   1篇
排序方式: 共有1278条查询结果,搜索用时 15 毫秒
71.
通过对冀北滦平盆地下白垩统西瓜园组沉积地层的实地考察,发现盆地内发育丰富的重力驱动作用沉积物。文中描述西瓜园组发育的滑动和滑塌现象,指出露头剖面中存在的挤压变形现象并非构造成因,而是由于滑动块体和滑塌块体前端的挤压应力环境造成的。在介绍西瓜园组重力流沉积发育环境的基础上,对露头中存在的若干重力流沉积进行了描述,并使用砂质碎屑流这一概念对这些现象进行了较为合理的成因解释。通过对滑动和滑塌(重力块体运动)和砂质碎屑流—浊流(重力流)沉积物研究,结合前人对该地区冲积扇—扇三角洲的研究成果,认为重力驱动作用是滦平盆地下白垩统西瓜园组沉积时期主要的搬运机制。  相似文献   
72.
This paper presents detailed mineral chemical, element geochemical and Sr–Nd–Hf isotopic data for the Late Jurassic (155?±?4 Ma) lamprophyre dikes in the Liaodong Peninsula, NE China. The lamprophyres are shoshonitic and geochemically fall into three groups: Group I has relatively high SiO2 (52.5–57.0 wt.%), low MgO (5.5–8.3 wt.%) and compatible trace element (e.g. Cr?=?128–470 ppm) contents, high initial 87Sr/86Sr ratios (0.7093–0.7117), and low εNd (T) values (?9.6 to ?12.1); Group II has relatively low SiO2 (44.8–50.0 wt.%), high MgO (10.8–14.2 wt.%) and compatible trace element (e.g. Cr?=?456–1,041 ppm) contents, low initial 87Sr/86Sr ratios (0.7073–0.7087), and high εNd (T) values (?1.4 to ?2.9); Group III is transitional between the two in all elemental and isotopic compositions. Interpretation of the elemental and isotopic data suggests that the lamprophyric melts were derived by partial melting of subcontinental lithospheric mantle (SCLM) at a depth of 60–80 km (group I), decompression melting of upwelling asthenosphere at 60–100 km (group II), and mixing between the SCLM-derived and asthenosphere-derived melts (group III). It is assumed that the local SCLM was detached at a depth of 60–80 km by the 155 Ma ago. A continental arc-rifting related to the Palaeo-Pacific plate subduction is favored as a geodynamic force for such a cratonic lithosphere detachment.  相似文献   
73.
对江汉盆地T油田主要的工业储层-下第三系新光沟嘴组沉积岩石的成岩流体进行了热力学研究。实测的成岩矿物流体包裹体的均一温度为110-139℃,属于该区中成岩阶段的温度范围(67-155℃)。成岩流体的压力为10.2-56MPa。成岩流体中阳离子的活度出现Ca^2+>Mg^2+>Na^+>K^+>Fe^3+>Fe^2+;阴离子的活离出现HCO3^->SO4^2->F^->Cl^->CO3^2-;气相成  相似文献   
74.
The soil conservation service (now Natural Resources Conservation Service) Curve Number (SCS-CN), one of the most commonly used methods for surface runoff prediction. The runoff calculated by this method was very sensitive to CN values. In this study, CN values were calculated by both arithmetic mean (CN_C) and least square fit method (CN_F) using observed rainfall-runoff data from 43 sites in the Loess Plateau region, which are considerably different from the CN2 values obtained from the USDA-SCS handbook table (CN_T). The results showed that using CN_C instead of CN_T for each watershed produce little improvement, while replacing CN_T with CN_F improves the performance of the original SCS-CN method, but still performs poorly in most study sites. This is mainly due to the SCS-CN method using a constant CN value and discounting of the temporal variation in rainfall-runoff process. Therefore, three factors—soil moisture, rainfall depth and intensity—affecting the surface runoff variability are considered to reflect the variation of CN in each watershed, and a new CN value was developed. The reliability of the proposed method was tested with data from 38 watersheds, and then applied to the remaining five typical watersheds using the optimized parameters. The results indicated that the proposed method, which boosted the model efficiencies to 81.83% and 74.23% during calibration and validation cases, respectively, performed better than the original SCS-CN and the Shi and Wang (2020b) method, a modified SCS-CN method based on tabulated CN value. Thus, the proposed method incorporating the influence of the temporal variability of soil moisture, rainfall depth, and intensity factors suggests an accurate runoff prediction for general applications under different hydrological and climatic conditions on the Loess Plateau region.  相似文献   
75.
Breakage models and particle analyses have been widely used as tools for describing and interpreting various deposits and providing parameters for assessing the particle-size distribution of the deposits. Debris flows can be seen as a two-phase rheological fluid with a clay-fluid composition, and debris-flow deposits comprise mud, silt, sand, and boulders, with grain sizes ranging from less than one μm to more than several meters. As a consequence, according to fractal theory, the particles in debris-flow deposits have self-similarity in geometrical shape and scale invariance in size. In this paper, the fractal dimensions of particles in various debris-flow deposits are calculated and corresponding fractal features are determined based on fractal-statistical theory. The aims of the study are: to provide a quantitative grain parameter that reflects both the grain composition and grain-size distribution in debris-flow deposits; to compare the fractal dimensions of grains in different types of debris-flow deposits and the degree of self-organization of debris flows; as well as to discuss the geological implications of fractal dimensions and fractal features of particles in debris-flow deposits.  相似文献   
76.
Summary A coupled ocean-atmosphere anomaly model has been developed for simulating ENSO cycle and its mechanism-study in this paper. After a long model run, the coupled model is successful in demonstrating ENSO-like irregular interannual variability and corresponding horizontal spatial structures. Based on the simulated results, the dynamics and the thermodynamics of the model ENSO cycle have been investigated, and in particular the negative feedback mechanisms that act to oppose instability of air-sea interaction, inducing termination of warm and cold events, have been examined. A detailed analysis of the oceanic wave dynamical properties and heat budget of the SST changes in a representative cycle suggest that the negative feedback mechanism to check the unstable growth of a warm event obviously differs from that of a cold event. The mechanism that induces decay and termination of a cold event is closely related to the negative, delayed feedback effect produced by the oceanic dynamical wave reflection at the western boundary. However, independent of the wave reflection effect, the negative feedback mechanism by which the coupled system returns from a warm event is associated with a slowly eastward-propagating coupling mode. Accompanied with the strong unstable development of the equatorial positive SST anomaly, the anomalous upwelling of cold water generated off the equator and the nonlinear anomalous meridional advection generated in the equator west of instability area jointly restrain the instability and finally plunge the system from a mature warm phase into a weak cold phase. A comparison between the results from the present model and the previous works is also discussed in this paper.With 16 Figures  相似文献   
77.
Low-velocity structure beneath Africa from forward modeling   总被引:1,自引:0,他引:1  
Seismic waveforms observed in South Africa containing the first arrival crossover of S to SKS (70° to 110°) are analyzed. The data consist of analog records from the World Wide Seismographic Station Network (WWSSN) of deep events beneath South America. The S-waves arrive 2 to 3 s early relative to PREM at ranges from 70° to 95° and then become increasingly delayed, becoming 5 to 6 s late at 110°. The SKS phase is late by 3 to 5 s over the entire range. This pushes crossover between S and SKS, normally observed at about 81°, out about 2° to 3°, which is the most anomalous shift ever reported. To model such features, we modified Grand's tomography model [Grand et al., GSA Today 7 (1997) 1–7], and generated 2D synthetics to match the data. The overall shape and position of the lower mantle low-velocity anomaly proposed by Grand predicts good results if lower mantle anomalies are enhanced to a level of about 4%. This results in a complex tabular structure extending upward from the core–mantle boundary about 1500 km into the mantle. These features appear to be consistent with a large young plume which is erupting off the CMB.  相似文献   
78.
Zhang  Ni  Sun  Qing  Yang  Zongji 《Landslides》2022,19(5):1199-1207

Coseismic deposits are easily transported outside of valleys, thereby inflicting damage through debris flows or aggregating and elevating riverbeds in the fluvial network. The evolution of coseismic deposits is crucial for predicting the sediment transport capacity and export time for managing postseismic geohazards; however, this evolution remains unclear. In this study, the spatiotemporal evolution of coseismic deposits due to rainfall is quantified at the valley scale to further obtain the sediment transport capacity. The results show that the relative average thickness predominantly controls the evolution pattern of the coseismic deposits. The sediment transport capacity, which is primarily influenced by rainfall conditions and topography, can be drastically increased by dam breaching and channel narrowing. Moreover, the computed export time, which significantly varies with the spatiotemporal distribution of deposits and the local climate, ranges from 2 to 80 years in the areas affected by the Wenchuan earthquake. This study contributes to providing scientific guidelines for efficiently managing postseismic geohazards and planning for disaster mitigation.

  相似文献   
79.
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号