首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   157篇
  免费   7篇
  国内免费   1篇
测绘学   2篇
大气科学   24篇
地球物理   34篇
地质学   59篇
海洋学   21篇
天文学   11篇
综合类   1篇
自然地理   13篇
  2021年   1篇
  2020年   3篇
  2019年   2篇
  2018年   4篇
  2017年   4篇
  2016年   9篇
  2015年   7篇
  2014年   6篇
  2013年   8篇
  2012年   8篇
  2011年   15篇
  2010年   12篇
  2009年   11篇
  2008年   17篇
  2007年   11篇
  2006年   5篇
  2005年   6篇
  2004年   9篇
  2003年   8篇
  2002年   2篇
  2000年   4篇
  1999年   1篇
  1998年   2篇
  1997年   2篇
  1996年   1篇
  1995年   2篇
  1993年   3篇
  1992年   2篇
排序方式: 共有165条查询结果,搜索用时 62 毫秒
71.
Ocean acidification increases the amount of dissolved inorganic carbon (DIC) available in seawater which can benefit photosynthesis in those algae that are currently carbon limited, leading to shifts in the structure and function of seaweed communities. Recent studies have shown that ocean acidification-driven shifts in seaweed community dominance will depend on interactions with other factors such as light and nutrients. The study of interactive effects of ocean acidification and warming can help elucidate the likely effects of climate change on marine primary producers. In this study, we investigated the ecophysiological responses of Cystoseira tamariscifolia (Hudson) Papenfuss. This large brown macroalga plays an important structural role in coastal Mediterranean communities. Algae were collected from both oligotrophic and ultraoligotrophic waters in southern Spain. They were then incubated in tanks at ambient (ca. 400–500 ppm) and high CO2 (ca. 1200–1300 ppm), and at 20 °C (ambient temperature) and 24 °C (ambient temperature +4 °C). Increased CO2 levels benefited the algae from both origins. Biomass increased in elevated CO2 treatments and was similar in algae from both origins. The maximal electron transport rate (ETRmax), used to estimate photosynthetic capacity, increased in ambient temperature/high CO2 treatments. The highest polyphenol content and antioxidant activity were observed in ambient temperature/high CO2 conditions in algae from both origins; phenol content was higher in algae from ultraoligotrophic waters (1.5–3.0%) than that from oligotrophic waters (1.0–2.2%). Our study shows that ongoing ocean acidification can be expected to increase algal productivity (ETRmax), boost antioxidant activity (EC 50 ), and increase production of photoprotective phenols. Cystoseira tamariscifolia collected from oligotrophic and ultraoligotrophic waters were able to benefit from increases in DIC at ambient temperatures. Warming, not acidification, may be the key stressor for this habitat as COlevels continue to rise.  相似文献   
72.
The survey of the hydrogeologic system formed by Gusev crater and Ma'adim Vallis (Aeolis subquadrangle of Mars) points out evidence for the existence of an ice-covered lake in Gusev crater. A first lake was formed by the drainage of the aquifer in the region surrounding Gusev before the entry of Ma'adim Vallis in the crater. The existence of a former lake in Gusev is deduced from the morphology of the Ma'adim delta. Its comparison with terrestrial Antarctic analogs argues for the presence of an ice-covered lake in Gusev at the time that the southern part of the crater's rampart was breached by Ma'adim first release, and for a subice–lacustrine construction of the valley's delta. Our survey shows that Ma'adim Vallis may have entered Gusev crater as late as Late Hesperian/Early Amazonian as part of a second lake episode. The relationship between the variation of the Gusev lake water-level, the volume of the lake, and the surface of the lake bed is established by our bathymetric model. The elevation of the former lake is deduced from the elevation of the mesa-like structures in the delta of Ma'adim Vallis. Furthermore, the correlation of the crater frequency of Gusev rampart with Mars' stratigraphic age shows that lakes may have occupied Gusev crater over a period of time covering 2 Gyrs., from the formation of the crater to the last episode of water release from Ma'adim Vallis. Though it is most likely that the lake was episodical, the recurrence of abundant water in Gusev crater makes this site a high priority for missions, either for martian resource exploration, or for the search of life.  相似文献   
73.
Currumbin Creek on the Australian Gold Coast is a wave-dominated tidal inlet which exhibits a particularly active morphology. The recent history of Currumbin Creek entrance has seen rapid growth of the entrance for access to the ocean by fishermen, as a world class surfing site, and as a recreational area. Before the construction of two groynes in the 70's, Currumbin Creek entrance was highly variable in terms of inlet location and sand bar characteristics due to a cyclical behaviour of spit migration. Nowadays, the entrance is stabilised. However, natural processes continue with the entrance infilling causing flood and navigation issues, resulting in a regular dredging program to maintain an open entrance and for regular beach nourishment plans.  相似文献   
74.
A comparative study of damage accumulation in magnesium aluminate spinel (MgAl2O4) has been conducted using ionoluminescence (IL), cathodoluminescence (CL) and Rutherford Backscattering Spectrometry/channeling (RBS/C) techniques. MgAl2O4 single crystal and polycrystalline samples were irradiated with 320 keV Ar+ ions at fluencies ranging from 1 × 1012 to 2 × 1016 cm?2 in order to create various levels of radiation damage. RBS/C measurements provided quantitative data about damage concentration in the samples. These values were then compared to the luminescence measurements. The results obtained by IL and RBS/C methods demonstrate a two-step character of damage buildup process. The CL data analysis points to the three-step damage accumulation mechanism involving the first defect transformation at fluencies of about 1013 cm?2 and second at about 1015 cm?2. The rate of changes resulting from the formation of nonluminescent recombination centers is clearly nonlinear and cannot be described in terms of continuous accumulation of point defects. Both, IL and CL techniques, appear as new, complementary tools bringing new possibilities in the damage accumulation studies in single- and polycrystalline materials.  相似文献   
75.
The ability of inorganic geochemistry to record environmental change and especially human impact has been evidenced by several studies across Europe, especially in peat, where it is possible to record the impact of agriculture, mining and other industries. However, despite the numerous investigations on the impact of ancient human activities such as ore mining and smelting, little attention has been paid to geochemistry as a tool to solve problems of palaeopollution in the surroundings of archaeological sites. This paper presents geochemical evidence of the impact of a possible early Roman road built in SE Belgian peatland. Increased Zn and Pb concentrations suggest that Pb–Zn ores were transported on the road. Lead isotope analyses suggest that these ores are locally derived, being compatible with those found in the nearby Pb–Zn ore deposits from East Belgium. Present results provide direct evidence that East Belgian Pb–Zn ores were already being mined during Roman times, i.e. earlier than previously suspected (i.e. 14th century) and that Zn appears to be relatively immobile here. On a broader scale, it also demonstrates that such an early road already had an impact on the environment in terms of metal pollution. This paper enlarges on the range of possibilities offered by geochemistry in the field of geoarchaeology.  相似文献   
76.
77.
The distributed hydrology–soil–vegetation model (DHSVM) was used to study the potential impacts of projected future land cover and climate change on the hydrology of the Puget Sound basin, Washington, in the mid‐twenty‐first century. A 60‐year climate model output, archived for the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4), was statistically downscaled and used as input to DHSVM. From the DHSVM output, we extracted multi‐decadal averages of seasonal streamflow, annual maximum flow, snow water equivalent (SWE), and evapotranspiration centred around 2030 and 2050. Future land cover was represented by a 2027 projection, which was extended to 2050, and DHSVM was run (with current climate) for these future land cover projections. In general, the climate change signal alone on sub‐basin streamflow was evidenced primarily through changes in the timing of winter and spring runoff, and slight increases in the annual runoff. Runoff changes in the uplands were attributable both to climate (increased winter precipitation, less snow) and land cover change (mostly reduced vegetation maturity). The most climatically sensitive parts of the uplands were in areas where the current winter precipitation is in the rain–snow transition zone. Changes in land cover were generally more important than climate change in the lowlands, where a substantial change to more urbanized land use and increased runoff was predicted. Both the annual total and seasonal distribution of freshwater flux to Puget Sound are more sensitive to climate change impacts than to land cover change, primarily because most of the runoff originates in the uplands. Both climate and land cover change slightly increase the annual freshwater flux to Puget Sound. Changes in the seasonal distribution of freshwater flux are mostly related to climate change, and consist of double‐digit increases in winter flows and decreases in summer and fall flows. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
78.
Data on temperature, major constituents and some trace elements, measured in the dissolved and particulate phases, were used to identify the hydrodynamics of a reservoir (the Bicaz reservoir, Romania). Results revealed that the reservoir experiences two thermal stratifications per year (summer and winter). However, the summer stratification is delayed by the high river inflow of June–July. Two layers were identified, a surface and a deep layer, whose location and impact vary with time. The surface layer originates from the river inflow (intrusion layer) and the deep current is produced by the outflow (velocity current). According to season, the river inflow either supplies the deep current or remains recordable up to the dam. Consequently, the structure of the water column, and thus the biogeochemical processes within it, are governed both by thermal stratification and by these layers.  相似文献   
79.
80.
This work presents the first study of the gaseous products resulting from the partial dissociation of methane and nitrogen in the PAMPRE experimental setup simulating Titan’s atmospheric chemistry.Using cryogenic trapping, the gaseous products generated from the chemical reactions occurring in the reactor have been trapped. Analyses of these products by gas chromatography coupled to mass spectrometry have allowed the detection and identification of more than 30 reaction products. Most of them are identified as nitrile species, accompanied by aliphatic hydrocarbons and a few aromatics compounds. The observed species are in agreement with the data from the recent Cassini-Huygens mission as well as from other laboratory setups capable of dissociating nitrogen and methane. This work emphasizes the probable importance of nitrogen-bearing compounds in the chemistry taking place in Titan’s atmosphere.Furthermore, a quantification of mono-nitriles with saturated alkyl chains has been performed relatively to hydrogen cyanide and shows a power law dependence in their concentration. This dependence is consistent with the Cassini-INMS data and Titan’s photochemical models.An empirical relationship has been extracted from our experimental data: [CxH2x−1N] = 100x−5, where x is the number of carbon atoms in the nitrile molecule. This relationship can be directly used in order to foretell the concentration of heavier nitriles induced by chemistry in Titan’s atmosphere.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号