首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   104篇
  免费   2篇
  国内免费   1篇
测绘学   3篇
大气科学   4篇
地球物理   30篇
地质学   50篇
海洋学   7篇
天文学   7篇
综合类   1篇
自然地理   5篇
  2022年   4篇
  2021年   2篇
  2020年   2篇
  2019年   4篇
  2018年   2篇
  2017年   3篇
  2016年   8篇
  2015年   5篇
  2014年   6篇
  2013年   8篇
  2012年   9篇
  2011年   13篇
  2010年   4篇
  2009年   5篇
  2008年   3篇
  2007年   5篇
  2006年   6篇
  2005年   2篇
  2004年   2篇
  2003年   4篇
  2002年   3篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1997年   1篇
  1995年   1篇
  1993年   1篇
  1991年   1篇
排序方式: 共有107条查询结果,搜索用时 15 毫秒
81.
82.
Mid-Holocene changes in vegetation, palaeohydrology and climate were investigated from the sediments of Lake Vankavad in the northern taiga of the Usa Basin, NE European Russia, through the analysis of pollen, plant macrofossils, Cladocera and diatoms. Lake Vankavad was probably formed at ca. 5000 BP (ca. 5600 cal. BP) and initially it was shallow with a littoral cladoceran fauna. Macrofossil and pollen results suggest that dense Betula-Picea forests grew in the vicinity and the shore was close to the sampling point. At ca. 4600 BP (ca. 5400 cal. BP) the water level rose coincident with the decrease in the density and area of forests, probably caused by cooling climate and accelerated spread of mires. There was also a further rise in the water level at ca. 3500 BP (ca. 3800 cal. BP). The initiation of the lake, followed by two periods of rising water-level, as well as the increase in mire formation, was a consequence of a rise in groundwater level. This probably reflects lower evapotranspiration in a cooling mid-Holocene climate and/or higher precipitation in the lowland area. Also the decreased forest density and area may have contributed to the lower evapotranspiration. It is also possible that permafrost aggradation or changes in peat ecosystems might have affected the hydrological conditions in the area.  相似文献   
83.
We compare insolation results calculated from two well-known empirical formulas (Seckel and Beaudry’s SB73 formula and the original Smithsonian (SMS) formula) and a radiative transfer model using input data predicted from meteorological weather-forecast models, and review the accuracy of each method. Comparison of annual mean daily irradiance values for clear-sky conditions between the two formulas shows that, relative to the SMS, the SB73 underestimates spring values by 9 W m-2 in the northern Adriatic Sea, although overall there is a good agreement between the annual results calculated with the two formulas. We also elucidate the effect on SMS of changing the ‘Sun-Earth distance factor (f)’, a parameter which is commonly assumed to be constant in the oceanographic context. Results show that the mean daily solar radiation for clear-sky conditions in the northern Adriatic Sea can be reduced as much as 12 W m-2 during summer due to a decrease in thef value. Lastly, surface irradiance values calculated from a simple radiative transfer model (GM02) for clear-sky conditions are compared to those from SB73 and SMS. Comparison within situ data in the northern Adriatic Sea shows that the GM02 estimate gives more realistic surface irradiance values than SMS, particularly during summer. Additionally, irradiance values calculated by GM02 using the buoy meteorological fields and ECMWF (The European Centre for Medium Range Weather Forecasts) meteorological data show the suitability of the ECMWF data usage. Through tests of GM02 sensitivity to key regional meteorological factors, we explore the main factors contributing significantly to a reduction in summertime solar irradiance in the Adriatic Sea.  相似文献   
84.
In coastal areas, sea level rise (SLR) and changing wave climates are expected to be the main oceanic drivers of shoreline adjustments. These drivers have been shown to vary on a wide spectrum of spatial and temporal scales. Nonetheless, a general rule about how this variability impacts global shorelines remains to be articulated. Here, we discuss the impacts of wave climate changes and SLR on the evolution of a barrier spit–inlet system over the last 250 years. The distal end of the Cap Ferret barrier spit, SW France, has undergone large-scale oscillations that were well correlated with variations of the decadal average of the winter North Atlantic Oscillation (NAO) index. The local wave climate hindcast supports that increased alongshore wave energy fluxes associated with the positive phase of the NAO were responsible for the updrift retreat of the spit. By opposition, the spit has elongated downdrift when waves were less energetic and more shore normal, as during the negative phase of the NAO. In addition, lower rates of SLR appeared to be necessary for the spit to develop, as higher rates of SLR very likely forced the adjacent inlet to enlarge, at the expense of the spit. These results should help to predict and detect coastal adjustments driven by climate change and by climate variability. © 2019 John Wiley & Sons, Ltd.  相似文献   
85.
86.
Stochastic Environmental Research and Risk Assessment - To evaluate the consequences on human health of radionuclide releases in the environment, numerical simulators are used to model the...  相似文献   
87.
The present study employed a modified Fenton system that aims to extend the optimum pH range towards neutral conditions for studying the oxidation of benzene, toluene, ethyl benzene, xylenes (BTEX) using glutamic acid (Glu) as an iron chelator. Addition of 20 mM Glu greatly enhanced the oxidation rate of BTEX in modified Fenton system at pH 5–7. A rapid mass destruction (>97% after 1 h) of BTEX as a water contaminant carried out in the presence of 500 mM H2O2, 10 mM Fe2+, and 20 mM Glu at pH 5 could be shown. The efficiency of this modified Fenton's system for mass destruction of BTEX in contaminated water was measured to estimate the impact of the major process variables that include initial concentrations of soluble Fe, H2O2, Glu (as metal chelating agent), and reaction time.  相似文献   
88.
Recent oceanographic field measurements and high-resolution numerical modelling studies have revealed intense, transient, submesoscale motions characterised by a horizontal length scale of 100–10,000 m. This submesoscale activity increases in the fall and winter when the mixed layer (ML) depth is at its maximum. In this study, the submesoscale motions associated with a large-scale anticyclonic gyre in the central Gulf of Taranto were examined using realistic submesoscale-permitting simulations. We used realistic flow field initial conditions and multiple nesting techniques to perform realistic simulations, with very-high horizontal resolutions (> 200 m) in areas with submesoscale variability. Multiple downscaling was used to increase resolution in areas where instability was active enough to develop multi-scale interactions and produce 5-km-diameter eddies. To generate a submesoscale eddy, a 200-m resolution was required. The submesoscale eddy was formed through small-scale baroclinic instability in the rim of a large-scale anticyclonic gyre leading to large vertical velocities and rapid restratification of the ML in a time-scale of days. The submesoscale eddy was confirmed by observational data from the area and we can say that for the first time we have a proof that the model reproduces a realistic submesoscale vortex, similar in shape and location to the observed one.  相似文献   
89.
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号