全文获取类型
收费全文 | 200篇 |
免费 | 4篇 |
国内免费 | 1篇 |
专业分类
测绘学 | 5篇 |
大气科学 | 12篇 |
地球物理 | 44篇 |
地质学 | 64篇 |
海洋学 | 18篇 |
天文学 | 47篇 |
自然地理 | 15篇 |
出版年
2021年 | 4篇 |
2019年 | 3篇 |
2018年 | 4篇 |
2017年 | 4篇 |
2016年 | 3篇 |
2014年 | 9篇 |
2013年 | 10篇 |
2012年 | 2篇 |
2011年 | 7篇 |
2010年 | 7篇 |
2009年 | 12篇 |
2008年 | 11篇 |
2007年 | 9篇 |
2006年 | 11篇 |
2005年 | 8篇 |
2004年 | 9篇 |
2003年 | 5篇 |
2002年 | 5篇 |
2001年 | 6篇 |
2000年 | 5篇 |
1999年 | 2篇 |
1998年 | 3篇 |
1997年 | 4篇 |
1996年 | 3篇 |
1995年 | 3篇 |
1994年 | 5篇 |
1992年 | 2篇 |
1990年 | 3篇 |
1989年 | 2篇 |
1986年 | 4篇 |
1985年 | 2篇 |
1983年 | 2篇 |
1981年 | 3篇 |
1980年 | 1篇 |
1978年 | 2篇 |
1977年 | 2篇 |
1974年 | 1篇 |
1973年 | 1篇 |
1970年 | 1篇 |
1969年 | 1篇 |
1968年 | 1篇 |
1900年 | 2篇 |
1899年 | 2篇 |
1898年 | 1篇 |
1895年 | 1篇 |
1892年 | 6篇 |
1889年 | 1篇 |
1885年 | 1篇 |
1880年 | 1篇 |
1877年 | 1篇 |
排序方式: 共有205条查询结果,搜索用时 15 毫秒
51.
M. A. Hayward P. R. Blake P. R. Messenger A. Taube 《Australian Journal of Earth Sciences》2013,60(4):487-492
The presence of granitoid clasts in Devonian sequences of the Mt Morgan area has been considered indicative of a Late Devonian age, with the clasts derived from the Middle Devonian (377 Ma) Mt Morgan Trondhjemite. However, a sequence of limestone and volcanolithic arenites and breccias containing Middle Devonian corals and conodonts, overlies a granitoid‐bearing conglomerate in Station Creek. This sequence, previously mapped as Dee Volcanics, is now assigned to the Raspberry Creek Formation of the Capella Creek Group. Petrographic and geochemical similarities between the granitoid clasts and phases of the Mt Morgan Trondhjemite indicate formation in similar tectonic environments by similar magmatic processes. These clasts were derived from either an earlier phase of Mt Morgan Trondhjemite magmatism, or from a discrete earlier magmatic episode of similar type and inferred tectonic setting to the Mt Morgan intrusion. 相似文献
52.
Jessie Woodbridge Heather J. Davies Will H. Blake Ralph M. Fyfe 《Journal of Paleolimnology》2014,52(3):229-244
Reservoirs provide important water resources and require careful management, through ecological monitoring, to identify and mitigate changes in water quality. Long-term data on vegetation changes and the impacts of human activities on reservoir water chemistry, however, are often limited. Setting restoration targets can therefore be problematic. Palaeoenvironmental research has made little use of reservoir sediments and there is great potential for palaeoecological data to be incorporated into management planning. Diatoms and pollen were analysed in sediment cores from Venford Reservoir, southwest England, to infer pH and land-use changes, respectively, over the last century. Diatom-inferred (DI) pH indicates that reservoir pH declined from ~pH 6.0 in the early part of the record and reached a low between AD 1920 and 1940 (~pH 5.6), which was likely associated with fossil fuel combustion and acid deposition. DI-pH then increased, but values remained relatively low, even in the most recent sediments (~pH 5.7), and the magnitude of inferred pH change over time was small. Land-use changes, such as increased grazing intensity and erosion, and establishment of pine plantations, also likely influenced reservoir water chemistry changes over time. Understanding the impacts of such factors on water chemistry has implications for future catchment land-use planning, which is essential for managing water resources. The pollen record indicates a shift from heather-dominated to grass-dominated vegetation since ~AD 1935–1950, which could be related to increased grazing intensity. The palaeoecological dataset is valuable as a long-term record against which short-term monitoring datasets and future changes can be assessed. 相似文献
53.
The sorption of ferrous iron to a clay mineral, nontronite (NAu-2, a ferruginous smectite), was investigated under strictly anoxic conditions as a function of pH (3-10), Fe2+ concentration (0.01-50 mM), equilibration time (1-35 days), and ionic strength (0.01-0.5 M NaClO4). The surface properties of NAu-2 were independently characterized to determine its fixed charge and amphoteric site density in order to interpret the Fe2+ sorption data. Fe2+ sorption to NAu-2 was strongly dependent on pH and ionic strength, reflecting the coupled effects of Fe2+ sorption through ion exchange and surface complexation reactions. Fe2+ sorption to NAu-2 increased with increasing pH from pH 2.5 to 4.5, remained constant from pH 4.5 to 7.0, increased again with further increase of pH from pH 7.0 to 8.5, and reached a maximum above pH 8.5. The Fe2+ sorption below pH 7.0 increased with decreasing ionic strength. The differences of Fe2+ sorption at different ionic strengths, however, diminished with increasing equilibration time. The Fe2+ sorption from pH 4.5 to 7.0 increased with increasing equilibration time up to 35 days and showed stronger kinetic behavior in higher ionic strength solutions. The kinetic uptake of Fe2+ onto NAu-2 is consistent with a surface precipitation mechanism although our measurements were not able to identify secondary precipitates. An equilibrium model that integrates ion exchange, surface complexation and aqueous speciation reactions reasonably well describes the Fe2+ sorption data as a function of pH, ionic strength, and Fe2+ concentration measured at 24 h of equilibration. Model calculations show that the species Fe(OH)+ was required to describe Fe2+ sorption above pH 8.0 satisfactorily. Overall, this study demonstrated that Fe2+ sorption to NAu-2 is affected by complex equilibrium and kinetic processes, likely caused by surface precipitation reactions. 相似文献
54.
55.
Barbara?BarlettaEmail authorView authors OrcID profile Isobel?J.?Simpson Nicola?J.?Blake Simone?Meinardi Louisa?K.?Emmons Omar?S.?Aburizaiza Azhar?Siddique Jahan?Zeb Liya?E.?Yu Haider?A.?Khwaja Muhammad?A.?Farrukh Donald?R.?Blake 《Journal of Atmospheric Chemistry》2017,74(1):87-113
We investigate the composition of 63 C2-C10 nonmethane hydrocarbons (NMHCs), methane (CH4) and carbon monoxide (CO), in Jeddah, Mecca, and Madina (Saudi Arabia), in Lahore, (Pakistan), and in Singapore. We established a database with which to compare and contrast NMHCs in regions where ambient levels and emissions are poorly characterized, but where conditions are favorable to the formation of tropospheric ozone, and where measurements are essential for improving emission inventories and modeling. This dataset will also serve as a base for further analysis of air pollution in Western Saudi Arabia including, but not limited to, the estimation of urban emissions and long range pollution transport from these regions. The measured species showed enhanced levels in all Saudi Arabian cities compared to the local background but were generally much lower than in Lahore. In Madina, vehicle exhaust was the dominant NMHC source, as indicated by enhanced levels of combustion products and by the good correlation between NMHCs and CO, while in Jeddah and Mecca a combination of sources needs to be considered. Very high NMHC levels were measured in Lahore, and elevated levels of CH4 in Lahore were attributed to natural gas. When we compared our results with 2010 emissions from the MACCity global inventory, we found discrepancies in the relative contribution of NMHCs between the measurements and the inventory. In all cities, alkenes (especially ethene and propene) dominated the hydroxyl radical (OH) reactivity (k OH) because of their great abundance and their relatively fast reaction rates with OH. 相似文献
56.
Esther C. Peters Philip A. Meyers Paul P. Yevich Norman J. Blake 《Marine pollution bulletin》1981,12(10):333-339
Colonies of the shallow-water Caribbean coral Manicina areolata incorporated petroleum hydrocarbons into their tissues during exposure to water accommodated fractions of No. 2 fuel oil for three months. This contamination was not removed after depuration periods of up to two weeks. Although these corals remained alive, evidence of pathological responses was found which included impaired development of reproductive tissues, degeneration and loss of symbiotic zooxanthellae, and atrophy of mucous secretory cells and muscle bundles. 相似文献
57.
58.
The production of mixed magmas (streaky pumice) during flow in a volcanic conduit has been modelled in the laboratory by studying the flow of two miscible fluids of differing viscosity passing concentrically through a vertical pipe. In the experiments reported in this paper, the outermost fluid is the more viscous, as would be the case when two magmas are simultaneously tapped from a zoned chamber in which silicic magma overlies mafic magma. At a Reynolds number (Re) which is much less than that required for turbulence in isoviscous pipe flow, the interface between two liquids of different viscosity can become unstable. Growth of the instability and mixing proceed when Re, based on the properties of the inner, less viscous fluid (Re
i), is greater than approximately 3 if between 10% and 90% of the flowing fluid is composed of the more viscous fluid. Outside this range of flow rate ratios, higher Re
i and viscosity ratios are required to ensure mixing. When the viscosity ratio U10 the unstable flow takes the form of an asymmetric, sinusoidal wave and at higher viscosity ratios axisymmetric, bead-like waves are the dominant instability. Entrainment across the boundaries of these wavy interfaces results in the production of streaky mixtures of the two liquids. The degree of mixing increases with Re
1, U and distance downstream. Application of experimental results to magmatic situations shows that mixing will be possible in eruptions which tap layers of different viscosity from a stratified chamber. If a volcanic feeder is allowed to become lined by silicic magma before a mafic magma layer is drawn up from the chamber then a mixed pumice (or lava) sequence will ensue. Alternatively, if draw-up occurs when the feeder is still propagating away from the chamber, the slower flowing silicic magma may be overtaken by the faster flowing mafic magma. The advancing conduit will then have mafic or hybrid chilled margins enclosing a silicic interior, i.e. the usual arrangement in composite dykes and sills. Simultaneous tapping of silicic and underlying mafic magmas from a chamber can thus lead to magma mixing and to the emplacement of either mixed pumice sequences or composite intrusions, depending on the history of magma withdrawal and the dynamics of flow in the conduit. 相似文献
59.
Fault blocks and inliers of uppermost Silurian to Middle Devonian strata in the Yarrol Province of central coastal Queensland have been interpreted either as island-arc deposits or as a continental-margin sequence. They can be grouped into four assemblages with different age ranges, stratigraphic successions, geophysical signatures, basalt geochemistry, and coral faunas. Basalt compositions from the Middle Devonian Capella Creek Group at Mt Morgan are remarkably similar to analyses from the modern Kermadec Arc, and are most consistent with an intra-oceanic arc associated with a backarc basin. They cannot be matched with basalts from any modern continental arc, including those with a thin crust (Southern Volcanic Zone of the Andes) or those built on recently accreted juvenile oceanic terranes (Eastern Volcanic Front of Kamchatka). Analyses from the other assemblages also suggest island-arc settings, although some backarc basin basalt compositions could be present. Arguments for a continental-margin setting based on structure, provenance, and palaeogeography are not conclusive, and none excludes an oceanic setting for the uppermost Silurian to Middle Devonian rocks. The Mt Morgan gold–copper orebody is associated with a felsic volcanic centre like those of the modern Izu–Bonin Arc, and may have formed within a submarine caldera. The data are most consistent with formation of the Capella Creek Group as an intra-oceanic arc related to an east-dipping subduction zone, with outboard assemblages to the east representing remnant arc or backarc basin sequences. Collision of these exotic terranes with the continent probably coincided with the Middle–Upper Devonian unconformity at Mt Morgan. An Upper Devonian overlap sequence indicates that all four assemblages had reached essentially their present relative positions early in Late Devonian time. Apart from a small number of samples with compositions typical of spreading backarc basins, Upper Devonian basalts and basaltic andesites of the Lochenbar and Mt Hoopbound Formations and the Three Moon Conglomerate are most like tholeiitic or transitional suites from evolved oceanic arcs such as the Lesser Antilles, Marianas, Vanuatu, and the Aleutians. However, they also match some samples from the Eastern Volcanic Front of Kamchatka. Their rare-earth and high field strength element patterns are also remarkably similar to Upper Devonian island arc tholeiites in the ophiolitic Marlborough terrane, supporting a subduction-related origin and a lack of involvement of continental crust in their genesis. Modern basalts from rifted backarc basins do not match the Yarrol Province rocks as well as those from evolved oceanic arcs, and commonly have consistently higher MgO contents at equivalent levels of rare-earth and high field strength elements. One of the most significant points for any tectonic model is that the Upper Devonian basalts become more arc-like from east to west, with all samples that can be matched most readily with backarc basin basalts located along the eastern edge of the outcrop belt. It is difficult to account for all geochemical variations in the Upper Devonian basalts of the Yarrol Province by any simplistic tectonic model using either a west-dipping or an east-dipping subduction zone. On a regional scale, the Upper Devonian rocks represent a transitional phase in the change from an intra-oceanic setting, epitomised by the Middle Devonian Capella Creek Group, to a continental margin setting in the northern New England Orogen in the Carboniferous, but the tectonic evolution must have been more complex than any of the models published to date. Certainly there are many similarities to the southern New England Orogen, where basalt geochemistry indicates rifting of an intra-oceanic arc in Middle to Late Devonian time. 相似文献
60.
Three models for the dynamics of seismic airgun‐generated bubbles and their associated far‐field signals are developed and compared with geophysical data. The first model of an airgun‐generated bubble uses a spherical approximation, the second is an approximate Lagrangian model which allows for small deformations from a spherical shape, whilst the final model is an axisymmetric boundary‐integral method which permits the bubble to evolve into highly non‐spherical geometries. The boundary‐integral method also allows both geometric interference and strong dynamic interactions in multi‐bubble studies. When comparing the spherical model to experimental data there are three apparent, significant differences: the magnitude of the primary pressure peak, which is greater in the model; the subsequent decay of the pressure peaks and motion – the experimental data demonstrating greater decay and a slower rise rate; and the frequency of oscillation, which is slower in the experimental data. It is believed that the first discrepancy is due to the initial stages of expansion where the compressed air is forced to sparge through the airgun ports. The other differences indicate that there is some other energy‐loss mechanism which is not accounted for in the spherical bubble model. Non‐spherical bubble behaviour is investigated through the use of two different deformable many‐bubble codes and their predictions are compared with the spherical model and experimental data. The Lagrangian model predicts the formation of a buoyancy‐driven liquid jet on the first collapse of a typical airgun bubble; however, the model breaks down when the bubble becomes significantly deformed, due to a low‐order spherical‐harmonic approximation for the potential. The axisymmetric boundary‐integral code models the jet shape accurately and it is found that these bubbles evolve to toroidal geometries when the jet impacts on the opposite surface of the bubble. This highly non‐spherical behaviour is readily observed on high‐speed films of airgun bubbles, and is one key source of energy loss; it damps the pulsations of the bubble and slows its rise speed. Inter‐bubble interactions are investigated using the two deformable bubble models, and the predictions are compared to field data. It was found that as the bubbles approach each other, their periods of oscillation increase in accordance with observations, and jets are formed in the direction of motion upon collapse. 相似文献