首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   50613篇
  免费   850篇
  国内免费   614篇
测绘学   1282篇
大气科学   3326篇
地球物理   9457篇
地质学   18551篇
海洋学   4906篇
天文学   12039篇
综合类   115篇
自然地理   2401篇
  2022年   361篇
  2021年   604篇
  2020年   682篇
  2019年   790篇
  2018年   1551篇
  2017年   1486篇
  2016年   1716篇
  2015年   884篇
  2014年   1591篇
  2013年   2778篇
  2012年   1780篇
  2011年   2256篇
  2010年   2054篇
  2009年   2572篇
  2008年   2251篇
  2007年   2313篇
  2006年   2169篇
  2005年   1443篇
  2004年   1444篇
  2003年   1331篇
  2002年   1299篇
  2001年   1147篇
  2000年   1122篇
  1999年   942篇
  1998年   964篇
  1997年   909篇
  1996年   742篇
  1995年   704篇
  1994年   737篇
  1993年   572篇
  1992年   578篇
  1991年   509篇
  1990年   602篇
  1989年   468篇
  1988年   466篇
  1987年   527篇
  1986年   425篇
  1985年   589篇
  1984年   593篇
  1983年   560篇
  1982年   566篇
  1981年   440篇
  1980年   491篇
  1979年   396篇
  1978年   409篇
  1977年   370篇
  1976年   335篇
  1975年   353篇
  1974年   336篇
  1973年   325篇
排序方式: 共有10000条查询结果,搜索用时 312 毫秒
351.
Evolution of sedimentary systems at large temporal and spatial scales cannot be scaled down to laboratory dimensions by conventional hydraulic Froude scaling. Therefore, many researchers question the validity of experiments aiming to simulate this evolution. Yet, it has been shown that laboratory experiments yield stratigraphic responses to allocyclic forcing that are remarkably similar to those in real‐world prototypes, hinting at scale independency with strong dependence on boundary conditions but weak dependence on the actual sediment transport dynamics. This paper addresses the dilemma by contrasting sediment transport rules that apply in the laboratory with those that apply in real‐world geological systems. It is demonstrated that the generation of two‐dimensional stratigraphy in a flume can be simulated numerically by the non‐linear diffusion equation. Sediment transport theory is used to demonstrate that only suspension‐dominated meandering rivers should be simulated with linear diffusion. With increasing grain‐size (coarse sand to gravel) and shallowness of river systems, the prediction of long‐term transport must be simulated by non‐linear, slope‐dependent diffusion to allow for increasing transport rates and thus change in stratigraphic style. To point out these differences in stratigraphic style, three stages in infill of accommodation have been defined here: (i) a start‐up stage, when the system is prograding to base level (e.g. the shelf edge) with no sediment flux beyond the base‐level point; (ii) a fill‐up stage, when the system is further aggrading while progressively more sediment is bypassing base level with the progression of the infill; and (iii) a keep‐up stage, when more than 90% of the input is bypassing the base level and less than 10% is used for filling the accommodation. By plotting the rate of change in flux for various degrees of non‐linearity (varying the exponent in the diffusion equation) it was found that the error between model and real‐world prototype is largest for the suspension‐dominated prototypes, although never more than 30% and only at the beginning of the fill‐up stage. The error reduces to only 10% for the non‐linear sandy‐gravelly and gravelly systems. These results are very encouraging and open up ways to calibrate numerical models of sedimentary system evolution by such experiments.  相似文献   
352.
In the Ordovician time, the transform margin of the Gornyi Altai region consisted of two bathymetric stages: (1) shelf and upper parts of continental slope; (2) foothills and lower parts of continental slope. The first stage includes the shallow-water facies complexes (terrigenous and terrigenous-carbonate schlieren and variegated flyschoid), while the second stage is composed of deep-water (black shale terrigenous) and subflysch gray (carbonate terrigenous) complexes. Model series of the facies complexes established in our work should be taken into account during the geodynamic analysis of fold zones.  相似文献   
353.
The Emeishan continental flood basalt (ECFB) sequence in Dongchuan, SW China comprises a basal tephrite unit overlain by an upper tholeiitic basalt unit. The upper basalts have high TiO2 contents (3.2–5.2 wt.%), relatively high rare-earth element (REE) concentrations (40 to 60 ppm La, 12.5 to 16.5 ppm Sm, and 3 to 4 ppm Yb), moderate Zr/Nb and Nb/La ratios (9.3–10.2 and 0.6–0.9, respectively) and relatively high Nd (t) values, ranging from − 0.94 to 2.3, and are comparable to the high-Ti ECFB elsewhere. The tephrites have relatively high P2O5 (1.3–2.0 wt.%), low REE concentrations (e.g., 17 to 23 ppm La, 4 to 5.3 ppm Sm, and 2 to 3 ppm Yb), high Nb/La (2.0–3.9) ratios, low Zr/Nb ratios (2.3–4.2), and extremely low Nd (t) values (mostly ranging from − 10.6 to − 11.1). The distinct compositional differences between the tephrites and the overlying tholeiitic basalts cannot be explained by either fractional crystallization or crustal contamination of a common parental magma. The tholeiitic basalts formed by partial melting of the Emeishan plume head at a depth where garnet was stable, perhaps > 80 km. We propose that the tephrites were derived from magmas formed when the base of the previously metasomatized, volatile-mineral bearing subcontinental lithospheric mantle was heated by the upwelling mantle plume.  相似文献   
354.
The maturity of terrigenous material of the Paleoproterozoic Udokan copper-bearing sedimentary complex is considered. The average values of hydrolyzate module (HM), alumina-silica module (AM), and Pettijohn’s coefficient of maturity appreciably vary throughout the Udokan Complex. Among cupriferous sandstones, rocks of the Aleksandrovka Formation are characterized by the highest maturity, whereas rocks of the Chitkanda Formation are distinguished by the lowest maturity. The maturity of cupriferous sandstones of the Sakukan Formation corresponds to that of host rocks. The maturity of cupriferous sandstones from the Aleksandrovka Formation is much higher than that of host rocks. In the Chitkanda Formation, the cupriferous sandstones are much less mature than host rocks. Climatic conditions in provenances estimated from the Nesbitt index of chemical weathering or chemical index of alteration (CIA) may be characterized as temperate ones without prominent climatic features. Most CIA values range from 46 to 66. The formation of copper-bearing sediments was closely related to the periods of volcanic activity.  相似文献   
355.
It is shown that glauconite-bearing interbeds are widespread in the layer-by-layer studied sections on the Sea of Okhotsk coast (Mainach section) and Kheisliveem River valley (Kavran section), the volcanoterrigenous rocks of the Kovachin, Amanin, and Gakkhin formations of the Paleogene in western Kamchatka (Upper Eocene-Lower Oligocene boundary beds). Detailed mineralogical and structural-crystallochemical characteristics of glauconite from the Amanin Formation are presented. It is suggested that such glauconite should not be used for geochronological purposes.Some specific features of glauconite formation, particularly, the preservation of specific morphological forms at high accumulation rates of volcano-terrigenous rocks, are discussed. Possibility of the formation of glauconite with the active influence of bacterial metabolism is considered.  相似文献   
356.
357.
The Eucla Basin including the vast Nullarbor Plain lies on the margins of the Yilgarn, Musgrave and Gawler cratons in southern Australia and owes its distinctive landscape to a unique set of interactions between eustatic, climatic and tectonic processes over the last ~ 50 Ma. Understanding of the history of the basin and the palaeovalleys that drained from the surrounding cratons are important because they contain major mineral deposits, and the sediments derived from them contain remobilised gold, uranium, and heavy minerals. In particular, a remarkably preserved palaeoshoreline sequence along the north-eastern margin of the Eucla Basin is highly prospective for heavy mineral placer deposits. The record of marine, marginal marine, estuarine, fluvial and lacustrine environments, as constrained mainly by an extensive borehole dataset, reflects major depositional events during the Palaeocene–Early Eocene, Middle–Late Eocene, Oligocene–Early Miocene, Middle Miocene–Early Pliocene and Pliocene–Quaternary. These events reflect the key role of eustatic sea-level variation which, during highstands, inundated the craton margins, flooding palaeovalleys to up to 400 km inboard of the present coastline. However, a systematic eastward migration of the depocentre across the Eucla Basin during the Neogene, together with apparent flow reversals in a number of palaeovalley systems draining the Gawler Craton, suggest that the Eucla Basin has also been subject to differential vertical movements, expressed as a west-side up, east-side down tilting of ~ 100–200 m. This differential movement forms part of a broader north-down–southwest-up dynamic topographic tilting of the Australian continent associated with relatively fast (6–7 cm/yr) northward plate motion since fast spreading commenced in the Southern Ocean at ~ 43 Ma. We suggest that the evolving dynamic topography field has played a key role in facilitating development of placer deposits, largely through multistage, eastward reworking of near-shore sequences during highstand transgressive cycles on a progressively tilting platform under the influence of persistent westerly weather systems.  相似文献   
358.
An exceptionally large tsunami affected the coastline of southern Chile during the Pliocene. Its backflow eroded coarse beach and coastal dune sediments and redistributed them over the continental shelf and slope. Sandstone dykes and sills injected from the base of the resulting hyperconcentrated flow into underlying cohesive muds, assisted in plucking up large blocks of the latter and incorporating them into the flow. Locally, the rip-up intraclasts were fragmented further by smaller-scale injections to form a distinct breccia of angular to rounded mudstone clasts within a medium to coarse sandstone matrix. Sandstone sills in places mimic normal sedimentary beds, complete with structures resembling inverse gradation, planar laminae, as well as ripple and trough cross-lamination. These were probably formed by internal sediment flow and shear stress as the semi-liquefied sand was forcefully injected into cracks. In borehole cores, such sills can easily be misinterpreted as normal sedimentary beds, which can have important implications for hydrocarbon exploration.  相似文献   
359.
The Mordor Alkaline Igneous Complex (MAIC) is a composite intrusion comprising a body of syenite and a funnel-shaped layered mafic–ultramafic intrusion of lamprophyric parentage, the Mordor Mafic–Ultramafic Intrusion or MMUI. The MMUI is highly unusual among intrusions of lamprophyric or potassic parentage in containing primary magmatic platinum-group element (PGE)-enriched sulfides. The MMUI sequence consists largely of phlogopite-rich pyroxenitic cumulates, with an inward dipping conformable layer of olivine-bearing cumulates divisible into a number of cyclic units. Stratiform-disseminated sulfide accumulations are of two types: disseminated layers at the base of cyclic units, with relatively high PGE tenors; and patchy PGE-poor disseminations within magnetite-bearing upper parts of cyclic units. Sulfide-enriched layers at cycle bases contain anomalous platinum group element contents with grades up to 1.5 g/t Pt+Pd+Au over 1-m intervals, returning to background values of low parts per billion (ppb) on a meter scale. They correspond to reversals in normal fractionation trends and are interpreted as the result of new magma influxes into a continuously replenished magma chamber. Basal layers have decoupled Cu and PGE peaks reflecting increasing PGE tenors up-section, due to increasing R factors during the replenishment episode, or progressive mixing of between resident PGE-poor magma and more PGE-enriched replenishing magma. The presence of PGE enriched sulfides in cumulates from a lamprophyric magma implies that low-degree partial melts do not necessarily leave sulfides and PGEs in the mantle restite during partial melting. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
360.
Giant groove casts have been found in the upper Proterozoic to Lower Cambrian Phe Formation (Haimanta Group), a siliciclastic sandstone/shale succession in the Tethyan Zone of the Higher Himalaya tectonic unit. The grooves are among the largest linear erosion structures related to submarine mass-movements observed in the geologic record. They are up to 4 m wide, about 0.2 m deep and can be traced for more than 35 m without changing their character. The grooves are straight, subparallel to cross-cutting striations with shallow semi-circular cross-sections and well-defined superimposed minor ridges and grooves. Groove casts exist on the soles of several sandstone beds within a 73 m thick logged section, commonly associated with flute casts. Their characteristics were compared with several other types of ancient and modern submarine linear erosion structures. A sand-rich, non-channelized basin floor depositional environment is inferred from the lithofacies, the combination of sedimentary structures, the lack of coarse-grained pebbly facies, the lateral continuity of beds, and the lack of channel structures. The grooves probably formed by laminar debris flows/concentrated density flows dragging blocks of already lithified sediment across the basin floor. When the bedding is structurally rotated back to horizontal, the groove casts show consistent North–South oriented palaeocurrent trends, with South-directed palaeocurrent directions indicated by flute casts. These palaeocurrent orientations contrast with previous palaeogeographic reconstructions of this area, which propose sediment delivery from the South. We therefore suggest a new “double provenance” model for the spatial relationship of late Proterozoic to Early Cambrian strata of the Himalaya, in which Lesser and Tethyan Himalayan age-equivalent sediment was deposited in a connected basin, where the former received detritus from the South, and the latter from a hitherto unknown source in the North. One possible candidate for this northern source is the South China Block and an associated Neoproterozoic volcanic arc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号