The Nagar Parkar Igneous Complex consists of Neoproterozoic igneous and metamorphic rocks dissected by mafic, felsic, and rhyolitic dykes. The latter can be classified broadly into porphyritic felsic dykes intruding gray and pink granites at Nagar Parkar and the surrounding areas, and the orthophyric felsic dykes intruding amphibolites, deformed pink granites, and the alkaline mafic dykes in the Dhedvero area, north of Nagar Parkar. The porphyritic felsic dykes are composed of perthites, quartz, and albitic plagioclase whereas the orthopheric felsic dykes contain K-feldspar (dominant), plagioclase, and minor quartz. Geochemically, the porphyritic and orthophyric felsic dykes are subalkaline and alkaline demonstrating post-orogenic A2- and OIB-A1-type characteristic on Nb–Y–Ce and Nb–Y–3Ga ternary plots, respectively. One orthophyric felsic dyke contains normative acmite and sodium metasilicate. This study suggests two distinct tectonic regimes for the origin of the felsic dykes of the area. The porphyritic felsic dykes show similarities with the ~800–700 Ma granites of the area, the rhyolite dykes of the Mount Abu, western Rajasthan in India, and the granites of the Seychelles microcontinent. The orthophyric felsic dykes show chemical resemblance with the Tavidar volcanic suite of western Rajasthan and the Silhouette and North islands of the Seychelles microcontinent. This study confirms spatial and temporal links among the Rodinian fragments exposed in the Nagar Parkar area of Pakistan, western Rajasthan of India, and the Seychelles microcontinent. 相似文献
This paper presents the experimental and numerical studies conducted on a steel column and a steel frame structure using free vibration analysis. The effects of damages on structures were investigated, which were simulated by introducing multiple cracks at different locations in the experimental and numerical models. The acceleration responses of the test models, were recorded through an accelerometer, and were used to calibrate the numerical models developed in finite element based software. Modal frequencies of damaged and undamaged structures were compared and analyzed, to derive relationships for damaged and undamaged structures' frequencies in terms of crack depth. It was found that, due to the presence of cracks, the mechanical properties of a structure changes, whereby, the modal frequencies decrease. An approximately linear trend was observed for the frequency decrease with the increase in crack depth, which was also confirmed by the numerical models. The derived relationships were extended to further develop a mechanics-based damage scale for steel structures, to help facilitate structural health monitoring and screening of vulnerable structures. 相似文献
The study examines the relationship between poverty and forest cover degradation in rural areas of Pakistan. The area selected for the study District Upper Dir is a rural and relatively backward region located in northwestern Pakistan, in Khyber-Pakhtunkhwa province. The study area is undergoing severe deforestation and natural disasters in the recent past. The study consists of two stages, in first stage the traditional Geographical information system image was used to analyze the spatial–temporal situation of the surroundings. In the second stage, well-designed questionnaire was used to collect the primary information from 420 randomly selected households of research areas. A multidimensional poverty index has been used to measure the poverty profile of the population. It has been found that 55% households were below the poverty line. Almost, 95% households are using wood for cooking purposes. High dependence on natural resources causes forest cover degradation while burning off too much wood causes CO2 emission and leads to environmental degradation. A major portion of population is living on steeply sloped areas with certain risks. It is found that frequency of flash flood is 53% and agricultural land (54%) is at high risk and often flows with flash floods. It is concluded that there is strong correlation between multidimensional poverty and forest cover degradation which leads to climate and environmental risks.
In this study, the baseline period (1960–1990) precipitation simulation of regional climate model PRECIS is evaluated and downscaled on a monthly basis for northwestern Himalayan mountains and upper Indus plains of Pakistan. Different interpolation models in GIS environment are used to generate fine scale (250?×?250 m2) precipitation surfaces from PRECIS precipitation data. Results show that the multivariate extension model of ordinary kriging that uses elevation as secondary data is the best model especially for monsoon months. Model results are further compared with observations from 25 meteorological stations in the study area. Modeled data show overall good correlation with observations confirming the ability of PRECIS to capture major precipitation features in the region. Results for low and erratic precipitation months, September and October, are however showing poor correlation with observations. During monsoon months (June, July, August) precipitation pattern is different from the rest of the months. It increases from south to north, but during monsoon maximum precipitation is in the southern regions of the Himalayas, and extreme northern areas receive very less precipitation. Modeled precipitation toward the end of the twenty-first century under A2 and B2 scenarios show overall decrease during winter and increase in spring and monsoon in the study area. Spatially, both scenarios show similar pattern but with varying magnitude. In monsoon, the Himalayan southern regions will have more precipitation, whereas northern areas and southern plains will face decrease in precipitation. Western and south western areas will suffer from less precipitation throughout the year except peak monsoon months. T test results also show that changes in monthly precipitation over the study area are significant except for July, August, and December. Result of this study provide reliable basis for further climate change impact studies on various resources. 相似文献
Landsat-5 Thematic Mapper (TM) dataset have been used to estimate salinity in the coastal area of Hong Kong. Four adjacent Landsat TM images were used in this study, which was atmospherically corrected using the Second Simulation of the Satellite Signal in the Solar Spectrum (6S) radiative transfer code. The atmospherically corrected images were further used to develop models for salinity using Ordinary Least Square (OLS) regression and Geographically Weighted Regression (GWR) based on in situ data of October 2009. Results show that the coefficient of determination (R2) of 0.42 between the OLS estimated and in situ measured salinity is much lower than that of the GWR model, which is two times higher (R2 = 0.86). It indicates that the GWR model has more ability than the OLS regression model to predict salinity and show its spatial heterogeneity better. It was observed that the salinity was high in Deep Bay (north-western part of Hong Kong) which might be due to the industrial waste disposal, whereas the salinity was estimated to be constant (32 practical salinity units) towards the open sea. 相似文献
The transition from the Triassic to Jurassic is associated with dramatic changes in Earth's climate. Pangaea was breaking up as North America rifted away from Africa, the Central Atlantic Magmatic Province erupted, and the concentration of atmospheric carbon dioxide increased dramatically. This article summarises the changes in Earth's climate associated with this transition, including a discussion of the various impacts of the increased carbon dioxide on the Earth system, the question of whether the wet episode in the Carnian was a global or regional event, the formation of bauxite deposits, and how dinosaur distributions changed over time. Palaeoclimate model simulations reveal the spatial changes in climate between the Triassic and Jurassic, illustrating the subtropics becoming slightly cooler and wetter despite the warming trend for the Earth's average temperature. 相似文献
This study investigates the values of pH, total dissolved solids (TDS), elevation, oxidative reduction potential (ORP), temperature, and depth, while the concentrations of Br, and potentially harmful metals (PHMs) such as Cr, Ni, Cd, Mn, Cu, Pb, Co, Zn, and Fe in the groundwater samples. Moreover, geographic information system (GIS), XLSTAT, and IBM SPSS Statistics 20 software were used for spatial distribution modeling, principal component analysis (PCA), cluster analysis (CA), and Quantile-Quantile (Q-Q) plotting to determine groundwater pollution sources, similarity index, and normal distribution reference line for the selected parameters. The mean values of pH, TDS, elevation, ORP, temperature, depth, and Br were 7.2, 322 mg/L, 364 m, 188 mV, 29.6 °C, 70 m, 0.20 mg/L, and PHMs like Cr, Ni, Cd, Mn, Cu, Pb, Co, Zn, and Fe were 0.38, 0.26, 0.08, 0.27, 0.36, 0.22, 0.04, 0.43 and 0.86 mg/L, respectively. PHMs including Cr (89%), Cd (43%), Mn (23%), Pb (79%), Co (20%), and Fe (91%) exceeded the guideline values set by the world health organization (WHO). The significant R2 values of PCA for selected parameters were also determined (0.62, 0.67, 0.78, 0.73, 0.60, 0.87, ?0.50, 0.69, 0.70, 0.74, ?0.50, 0.70, 0.67, 0.79, 0.59, and ?0.55, respectively). PCA revealed three geochemical processes such as geogenic, anthropogenic, and reducing conditions. The mineral phases of Cd(OH)2, Fe(OH)3, FeOOH, Mn3O4, Fe2O3, MnOOH, Pb(OH)2, Mn(OH)2, MnO2, and Zn(OH)2 (?3.7, 3.75, 9.7, ?5.8, 8.9, ?3.6, 2.2, ?4.6, ?7.7, ?0.9, and 0.003, respectively) showed super-saturation and under-saturation conditions. Health risk assessment (HRA) values for PHMs were also calculated and the values of hazard quotient (HQ), and hazard indices (HI) for the entire study area were increased in the following order: Cd>Ni>Cu>Pb>Mn>Zn>Cr. Relatively higher HQ and HI values of Ni, Cd, Pb, and Cu were greater than one showing unsuitability of groundwater for domestic, agriculture, and drinking purposes. The long-term ingestion of groundwater could also cause severe health concerns such as kidney, brain dysfunction, liver, stomach problems, and even cancer. 相似文献
Natural Hazards - Time series studies depend mostly on stochastic models for radon seasonal, annual or temporal variability explanations. Others solve radon transport steady state equation... 相似文献
Belt and Road Initiative (BRI) is a Chinese national strategy which calls for cooperative economic, political and cultural exchange at the global level along the ancient Silk Road. The overwhelming natural hazards located along the belt and road bring great challenges to the success of BRI. In this framework, a 5-year international program was launched to address issues related to hazards assessment and disaster risk reduction (DRR). The first workshop of this program was held in Beijing with international experts from over 15 countries. Risk conditions on Belt and Road Countries (BRCs) have been shared and science and technology advancements on DRR have been disseminated during the workshop. Under this program, six task forces have been setup to carry out collaborative research works and three prioritized study areas have been established. This workshop announced the launching of this program which involved partners from different countries including Pakistan, Nepal, Russia, Italy, United Kingdom, Sri Lanka and Tajikistan. The program adopted the objectives of Sendai Framework for Disaster Risk Reduction 2015–2030 and United Nation Sustainable Development Goals 2030 and was implemented to assess disaster risk in BRCs and to propose suitable measures for disaster control which can be appropriate both for an individual country and for specific sites. This paper deals with the outcomes of the workshop and points out opportunities for the near future international cooperation on this matter. 相似文献