首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2530篇
  免费   60篇
  国内免费   60篇
测绘学   68篇
大气科学   386篇
地球物理   557篇
地质学   638篇
海洋学   642篇
天文学   215篇
综合类   36篇
自然地理   108篇
  2024年   2篇
  2023年   5篇
  2022年   22篇
  2021年   37篇
  2020年   41篇
  2019年   50篇
  2018年   122篇
  2017年   116篇
  2016年   172篇
  2015年   79篇
  2014年   155篇
  2013年   221篇
  2012年   111篇
  2011年   151篇
  2010年   155篇
  2009年   151篇
  2008年   141篇
  2007年   139篇
  2006年   111篇
  2005年   105篇
  2004年   108篇
  2003年   76篇
  2002年   56篇
  2001年   49篇
  2000年   34篇
  1999年   33篇
  1998年   25篇
  1997年   20篇
  1996年   16篇
  1995年   10篇
  1994年   12篇
  1993年   9篇
  1992年   9篇
  1991年   11篇
  1990年   12篇
  1989年   5篇
  1988年   5篇
  1987年   8篇
  1986年   6篇
  1985年   10篇
  1984年   8篇
  1983年   5篇
  1982年   11篇
  1981年   4篇
  1980年   6篇
  1979年   3篇
  1976年   2篇
  1975年   2篇
  1973年   2篇
  1972年   3篇
排序方式: 共有2650条查询结果,搜索用时 0 毫秒
101.
We present climate responses of Representative Concentration Pathways (RCPs) using the coupled climate model HadGEM2-AO for the Coupled Model Intercomparison Project phase 5 (CMIP5). The RCPs are selected as standard scenarios for the IPCC Fifth Assessment Report and these scenarios include time paths for emissions and concentrations of greenhouse gas and aerosols and land-use/land cover. The global average warming and precipitation increases for the last 20 years of the 21st century relative to the period 1986-2005 are +1.1°C/+2.1% for RCP2.6, +2.4°C/+4.0% for RCP4.5, +2.5°C/+3.3% for RCP6.0 and +4.1°C/+4.6% for RCP8.5, respectively. The climate response on RCP 2.6 scenario meets the UN Copenhagen Accord to limit global warming within two degrees at the end of 21st century, the mitigation effect is about 3°C between RCP2.6 and RCP8.5. The projected precipitation changes over the 21st century are expected to increase in tropical regions and at high latitudes, and decrease in subtropical regions associated with projected poleward expansions of the Hadley cell. Total soil moisture change is projected to decrease in northern hemisphere high latitudes and increase in central Africa and Asia whereas near-surface soil moisture tends to decrease in most areas according to the warming and evaporation increase. The trend and magnitude of future climate extremes are also projected to increase in proportion to radiative forcing of RCPs. For RCP 8.5, at the end of the summer season the Arctic is projected to be free of sea ice.  相似文献   
102.
103.
The Toodoggone district comprises Upper Triassic to Lower Jurassic Hazelton Group Toodoggone Formation volcanic and sedimentary rocks, which unconformably overlie submarine island-arc volcanic and sedimentary rocks of the Lower Permian Asitka Group and Middle Triassic Takla Group, some of which are intruded by Upper Triassic to Lower Jurassic plutons and dikes of the Black Lake suite. Although plutonism occurred episodically from ca. 218 to 191 Ma, the largest porphyry Cu–Au ± Mo systems formed from ca. 202 to 197 Ma, with minor mineralization occurring from ca. 197 to 194 Ma. Porphyry-style mineralization is hosted by small-volume (<1 km3), single-phase, porphyritic igneous stocks or dikes that have high-K calc-alkaline compositions and are comparable with volcanic-arc granites. The Fin porphyry Cu–Au–Mo deposit is anomalous in that it is 16 m.y. older than any other porphyry Cu–Au ± Mo occurrence in the district and has lower REEs. All porphyry systems are spatially restricted to exposed Asitka and Takla Group basement rocks, and rarely, the lowest member of the Hazelton Group (i.e., the ca. 201 Ma Duncan Member). The basement rocks to intrusions are best exposed in the southern half of the district, where high rates of erosion and uplift have resulted in their preferential exposure. In contrast, low- and high-sulfidation epithermal systems are more numerous in the northern half of the district, where the overlying Hazelton Group rocks dominate exposures. Cogenetic porphyry systems might also exist in the northern areas; however, if they are present, they are likely to be buried deeply beneath Hazelton Group rocks. High-sulfidation epithermal systems formed at ca. 201 to 182 Ma, whereas low-sulfidation systems were active at ca. 192 to 162 Ma. Amongst the studied epithermal systems, the Baker low-sulfidation epithermal deposit displays the strongest demonstrable genetic link with magmatic fluids; fluid inclusion studies demonstrate that its ore fluids were hot (>468°C), saline, and deposited metals at deep crustal depths (>2 km). Sulfur, C, O, and Pb isotope data confirm the involvement of a magmatic fluid, but also suggest that the ore fluid interacted with Asitka and Takla Group country rocks prior to metal deposition. In contrast, in the Shasta, Lawyers, and Griz-Sickle low-sulfidation epithermal systems, there is no clear association with magmatic fluids. Instead, their fluid inclusion data indicate the involvement of low-temperature (175 to 335°C), low-salinity (1 to 11 equiv. wt.% NaCl) fluids that deposited metals at shallow depths (<850 m). Their isotope (i.e., O, H, Pb) data suggest interaction between meteoric and/or metamorphic ore fluids with basement country rocks.  相似文献   
104.
We examined the anthropogenic and natural causes of flood risks in six representative cities in the Gangwon Province of Korea. Flood damage per capita is mostly explained by cumulative upper 5% summer precipitation amount and the year. The increasing flood damage is also associated with deforestation in upstream areas and intensive land use in lowlands. Human encroachment on floodplains made these urban communities more vulnerable to floods. Without changes in the current flood management systems of these cities, their vulnerability to flood risks will remain and may even increase under changing climate conditions.  相似文献   
105.
Seismic and geological information on the Lomonosov Ridge is considered with reference to drilling data obtained during the ACEX-302 expedition. A new zonation proposed for the composite section of the ridge sedimentary cover and based on marine microfossils (silicoflagellates and dinocysts) from several boreholes is correlated with biostratigraphic zones of Paleogene sections in northern West Siberia. Principal stages of the Arctic basin development in the Aptian-Cenozoic are defined in onshore and Lomonosov Ridge sections. Synchronous formation of sedimentary sequences in the ridge, an element of the Arctic basin, shelves, and epicontinental seas is established for the period under consideration.  相似文献   
106.
Geochemical processes were identified as controlling factors of groundwater chemistry, including chemical weathering, salinization from seawater and dry sea-salt deposition, nitrate contamination, and rainfall recharge. These geochemical processes were identified using principal component analysis of major element chemistry of groundwater from basaltic aquifers in Jeju Island, South Korea, a volcanic island with intense agricultural activities. The contribution of the geochemical processes to groundwater chemistry was quantified by a simple mass-balance approach. The geochemical effects due to seawater were considered based on Cl contributions, whereas the effects due to natural chemical weathering were based on alkalinity. Nitrogenous fertilizers, and especially the associated nitrification processes, appear to significantly affect groundwater chemistry. A strong correlation was observed between Na, Mg, Ca, SO4 and Cl, and nitrate concentrations in groundwater. Correspondingly, the total major cations, Cl, and SO4 in groundwater were assessed to estimate relative effect of N-fertilizer use on groundwater chemistry. Cl originates more from nitrate sources than from seawater, whereas SO4 originates mostly from rainwater. N-fertilizer use has shown the greatest effect on groundwater chemistry, particularly when nitrate concentrations exceed 6–7 mg/L NO3–N. Nitrate contamination significantly affects groundwater quality and 18% of groundwater samples have contamination-dominated chemistry.  相似文献   
107.
Structures of adjoint sensitivities to potential vorticity for specific initial and final norm are investigated for a short-range cyclone forecast in a three-dimensional quasigeostrophic (QG) model. Moreover, adjoint sensitivities to potential vorticity are compared with nonlinear sensitivities calculated for the same cyclogenesis case in the QG model. The adjoint sensitivities using different initial and final norms (e.g., total QG disturbance energy and potential enstrophy) show approximately similar characteristics for the horizontal and vertical structures and evolutions. Consistent with previous studies, the horizontal structure of the adjoint sensitivity is smaller for the energy norm than for the potential enstrophy norm. The dynamical mechanism of cyclone development by adjoint sensitivity coincides with that of nonlinear sensitivity, with slight differences in the region of sensitivity maxima over the upstream (nascent) low for the adjoint (nonlinear) sensitivity. The adjoint sensitivities show different vertical distributions from the nonlinear sensitivities. Consistent with the sensitive regions denoted by singular vectors and error evolution in the QG model, maxima of the adjoint sensitivities are located at both the upper and lower boundaries, with prominent secondary peaks in the lower to mid-troposphere of the domain. The level of the secondary maxima changes depending on the initial and final norm used. The secondary peak is located in the lower to mid- (mid-) troposphere for the total QG disturbance energy (potential enstrophy) as the initial and final norm. Based on the correspondence in the level of the sensitivity maxima in the interior of the domain between the adjoint and nonlinear sensitivities, adjoint sensitivities may serve as an alternative to nonlinear sensitivities given the enormous computing expenses in nonlinear sensitivity calculation.  相似文献   
108.
We present a comprehensive discussion on what cause high ozone episodes at a suburban photochemical observation site of the Seoul Metropolitan Area (population ~23 million). The observational site, Taehwa Research Forest (TRF), is situated ~30 km from the center of Seoul. In June 2011, we observed two very distinctive ozone periods-high ozone (peak up to 120 ppbv) and low ozone (peak up to 60 ppbv) in the mid and early month, respectively. The trace gas measurement dataset, especially CO and NO X clearly indicate that less anthropogenic influences during the high ozone period. Volatile organic compound (VOC) measurement results show that at the observational site, biogenic VOCs (mostly isoprene) contribute most of chemical reactivity towards OH, although toluene from anthropogenic activities was observed in higher concentrations. Back-trajectory analysis indicates that air-masses from the forest part of Korea Peninsula were dominant influences during the high ozone episode event. On the other hand, Aged air masses from China were the dominant influence during the low ozone episode event. Model calculations conducted using the University of Washington Chemical Mechanism (UWCM) box model, also consistently show that BVOC, especially isoprene photochemistry, can be the significantly contribution to local ozone formation in the given photochemical environments of TRF. These research results strongly suggest that ozone control strategy in the Eastern Asian megacities, mostly situated in surrounding forest areas should be based on the comprehensive scientific understanding in BVOC photochemistry and interplays between anthropogenic and biogenic interactions.  相似文献   
109.
In this study, the global Lorenz atmospheric energy cycle is evaluated using the Modern Era Retrospective analysis for Research and Applications (MERRA) and the National Center for Environmental Prediction and the Department of Energy (NCEP R2) reanalysis datasets over a 30-year period (1979–2008) for the annual, JJA, and DJF means. The energy cycle calculated from the two reanalysis datasets is largely consistent, but the energy cycle determined using the MERRA dataset is more active than that determined from the NCEP R2 dataset. For instance, with regard to the annual mean, the general discrepancy between the energy components in the global integral is about 5 %, whereas the discrepancy between the conversion components is about 16  %, with the exception of C(PM, KM), which has a different sign in the global integrals. The latitude-altitude cross-section indicates that the difference in the energy cycle of the two reanalysis datasets is larger in the southern hemisphere than in the northern hemisphere. The conversion rates of mean available potential energy to mean kinetic energy [C(PM, KM)] and eddy available potential energy to eddy kinetic energy [C(PE, KE)] are also calculated using two formulations (so-called ‘v·grad z’ and ‘ω·α’) for the two reanalysis datasets. The differences in the conversion rate between the two reanalysis datasets for the global integral are not appreciable for the two formulations.  相似文献   
110.
In this study,cloud base height(CBH) and cloud top height(CTH) observed by the Ka-band(33.44 GHz) cloud radar at the Boseong National Center for Intensive Observation of Severe Weather during fall 2013(September-November) were verified and corrected.For comparative verification,CBH and CTH were obtained using a ceilometer(CL51) and the Communication,Ocean and Meteorological Satellite(COMS).During rainfall,the CBH and CTH observed by the cloud radar were lower than observed by the ceilometer and COMS because of signal attenuation due to raindrops,and this difference increased with rainfall intensity.During dry periods,however,the CBH and CTH observed by the cloud radar,ceilometer,and COMS were similar.Thin and low-density clouds were observed more effectively by the cloud radar compared with the ceilometer and COMS.In cases of rainfall or missing cloud radar data,the ceilometer and COMS data were proven effective in correcting or compensating the cloud radar data.These corrected cloud data were used to classify cloud types,which revealed that low clouds occurred most frequently.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号