首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   306篇
  免费   18篇
  国内免费   2篇
测绘学   9篇
大气科学   19篇
地球物理   83篇
地质学   117篇
海洋学   22篇
天文学   52篇
综合类   1篇
自然地理   23篇
  2022年   3篇
  2021年   9篇
  2020年   11篇
  2019年   8篇
  2018年   15篇
  2017年   12篇
  2016年   16篇
  2015年   15篇
  2014年   14篇
  2013年   25篇
  2012年   15篇
  2011年   18篇
  2010年   19篇
  2009年   20篇
  2008年   17篇
  2007年   10篇
  2006年   17篇
  2005年   9篇
  2004年   9篇
  2003年   11篇
  2002年   12篇
  2001年   4篇
  2000年   1篇
  1999年   2篇
  1998年   2篇
  1997年   3篇
  1996年   3篇
  1995年   2篇
  1993年   2篇
  1992年   1篇
  1991年   2篇
  1989年   3篇
  1988年   1篇
  1987年   3篇
  1986年   3篇
  1985年   1篇
  1979年   3篇
  1978年   1篇
  1973年   2篇
  1955年   1篇
  1939年   1篇
排序方式: 共有326条查询结果,搜索用时 171 毫秒
261.
A synthetic Topopah Spring Tuff water representative of one type of pore water at Yucca Mountain, NV was evaporated at 95°C in a series of experiments to determine the geochemical controls for brines that may form on, and possibly impact upon the long-term integrity of waste containers and drip shields at the designated high-level, nuclear-waste repository. Solution chemistry, condensed vapor chemistry, and precipitate mineralogy were used to identify important chemical divides and to validate geochemical calculations of evaporating water chemistry using a high temperature Pitzer thermodynamic database. The water evolved toward a complex "sulfate type" brine that contained about 45 mol % Na, 40 mol % Cl, 9 mol % NO3, 5 mol % K, and less than 1 mol % each of SO4, Ca, Mg, ∑CO2(aq), F, and Si. All measured ions in the condensed vapor phase were below detection limits. The mineral precipitates identified were halite, anhydrite, bassanite, niter, and nitratine. Trends in the solution composition and identification of CaSO4 solids suggest that fluorite, carbonate, sulfate, and magnesium-silicate precipitation control the aqueous solution composition of sulfate type waters by removing fluoride, calcium, and magnesium during the early stages of evaporation. In most cases, the high temperature Pitzer database, used by EQ3/6 geochemical code, sufficiently predicts water composition and mineral precipitation during evaporation. Predicted solution compositions are generally within a factor of 2 of the experimental values. The model predicts that sepiolite, bassanite, amorphous silica, calcite, halite, and brucite are the solubility controlling mineral phases.  相似文献   
262.
Human‐accelerated climate change is quickly leading to glacier‐free mountains, with consequences for the ecology and hydrology of alpine river systems. Water origin (i.e., glacier, snowmelt, precipitation, and groundwater) is a key control on multiple facets of alpine stream ecosystems, because it drives the physico‐chemical template of the habitat in which ecological communities reside and interact and ecosystem processes occur. Accordingly, distinct alpine stream types and associated communities have been identified. However, unlike streams fed by glaciers (i.e., kryal), groundwater (i.e., krenal), and snowmelt/precipitation (i.e., rhithral), those fed by rock glaciers are still poorly documented. We characterized the physical and chemical features of these streams and investigated the influence of rock glaciers on the habitat template of alpine river networks. We analysed two subcatchments in a deglaciating area of the Central European Alps, where rock glacier‐fed, groundwater‐fed, and glacier‐fed streams are all present. We monitored the spatial, seasonal, and diel variability of physical conditions (i.e., water temperature, turbidity, channel stability, and discharge) and chemical variables (electrical conductivity, major ions, and trace element concentrations) during the snowmelt, glacier ablation, and flow recession periods of two consecutive years. We observed distinct physical and chemical conditions and seasonal responses for the different stream types. Rock glacial streams were characterized by very low and constant water temperatures, stable channels, clear waters, and high concentrations of ions and trace elements that increased as summer progressed. Furthermore, one rock glacier strongly influenced the habitat template of downstream waters due to high solute export, especially in late summer under increased permafrost thaw. Given their unique set of environmental conditions, we suggest that streams fed by thawing rock glaciers are distinct river habitats that differ from those normally classified for alpine streams. Rock glaciers may become increasingly important in shaping the hydroecology of alpine river systems under continued deglaciation.  相似文献   
263.
Mixed messages: Buying back Australia's fishing industry   总被引:1,自引:1,他引:0  
This paper discusses the process and outcomes of a major buyback of commercial fishing concessions across all Australian Commonwealth-managed fisheries through 2006. It argues that the intent of the buyback program was ambiguous, the process was flawed, and the outcomes of doubtful benefit to fish or to fishermen. This case study directs attention to deeper issues that prevail in forms of managing people under the guise of a non-explicit ideology of “extol and control”.  相似文献   
264.
Habitat fragmentation in meadows of Posidonia oceanica, the most important and abundant seagrass in the Mediterranean Sea, was investigated at a region-wide spatial scale using a synthetic ecological index, the Patchiness Index (PI). We tested the hypothesis that human impacts are the major factor responsible for habitat fragmentation in P. oceanica meadows contrasting fragmentation of meadows located in “anthropized” areas with that of meadows located in areas with low anthropization and considered as virtually “natural”. We also related fragmentation of meadow with the morphodynamic state of the submerged beach (i.e. distinctive types of beach produced by the topography, the wave climate and the sediment composition) in order to investigate the influence of one natural component on the seagrass meadow seascape. Results demonstrated that fragmentation in the P. oceanica meadows is strongly influenced by the human component, being lower in natural meadows than in anthropized ones, and that it is little influenced by the morphodynamic state of the coast. The use of landscape approaches to discriminate natural disturbance from human impacts that affect seagrass meadows is thus recommended for the proper management of coastal zones.  相似文献   
265.
Spectral light attenuation profiles and concentrations of total and dissolved carbon (C), nutrients and chlorophyll a (Chla) were studied along transects running from the river mouth to the Kara Sea during late summer 2003 for the Yenisey and fall 2005 for the Ob estuaries. Earth Observation data were used to generate composite images of water color and Chla distribution over the estuaries and the Kara Sea to reveal the spatial impact of the river efflux in terms of optical properties.  相似文献   
266.
Large quantities of methane (C1), ethane (C2), and propane (C3) emanate from shallow marine seeps near Coal Oil Point (COP), California. Concentrations of these gases were analyzed in the surface water down-current of the seep field over a 15-month period. The variable proportions of C1, C2, and C3 analyzed in gas bubbles emitted from 16 distinct seeps in the COP field encompass much of the variability found in the surface waters down-current. However, waters with disproportionate levels of C1 suggest the presence of additional C1 sources. Based on three spatial surveys, covering areas up to 280 km2, C2 and C3 air-sea fluxes were estimated to be in the order of 3.7 and 1.4 μmol day?1 m?2, respectively. Only 0.6% of C2 and 0.5% of C3 in the dissolved plume originating from the COP seep field are transferred to the atmosphere in the study area, with the fate of the remainder uncertain.  相似文献   
267.
Understanding coarse sediment transport is crucial for the prediction of sediment migration and the consequent development of fluvial morphologies. In this study, cobble displacements in a pre-Alpine creek have been recorded by means of radio frequency identification (RFID). Pebble monitoring has been systematically performed after each rainfall event with moderate precipitation, in order to exclude the superimposition of sediment displacements induced by triggering factors acting at different times. The analysis of the collected data was carried out through the application of both a principal component analysis and the Buckingham Π theorem. The experimental trends were interpreted considering the ratio of mobile pebbles, the pebbles' displacement and virtual velocity as the dependent variables. These quantities mostly depend on the event peak discharge, with a nonlinear increase of the travelled distance and a growth of up to two orders of magnitude of the virtual velocity (for an approximately 10× increase in peak discharge). An inverse dependency of the virtual velocity on the event duration was also observed. A comparison of the results obtained with those from laboratory investigations of bedload transport mechanics evidenced the differences in parametric trends associated with sediment mobility in the two environments. This contrast brings forward the combination of multiple drivers of sediment mobility, such as local morphology, sediment dimensions and flow unsteadiness, warranting a further in-depth investigation. Representation of results in a dimensionless form is suggested as a good practice to analyse data from case studies characterized by different scales. © 2019 John Wiley & Sons, Ltd.  相似文献   
268.
The development of cost-effective and environmentally acceptable geophysical methods for the exploration of mineral resources is a challenging task. Seismic methods have the potential to delineate the mineral deposits at greater depths with sufficiently high resolution. In hardrock environments, which typically host the majority of metallic mineral deposits, seismic depth-imaging workflows are challenged by steeply dipping structures, strong heterogeneity and the related wavefield scattering in the overburden as well as the often limited signal-to-noise ratio of the acquired data. In this study, we have developed a workflow for imaging a major iron-oxide deposit at its accurate position in depth domain while simultaneously characterizing the near-surface glacial overburden including surrounding structures like crossing faults at high resolution. Our workflow has successfully been showcased on a 2D surface seismic legacy data set from the Ludvika mining area in central Sweden acquired in 2016. We applied focusing prestack depth-imaging techniques to obtain a clear and well-resolved image of the mineralization down to over 1000 m depth. In order to account for the shallow low-velocity layer within the depth-imaging algorithm, we carefully derived a migration velocity model through an integrative approach. This comprised the incorporation of the tomographic near-surface model, the extension of the velocities down to the main reflectors based on borehole information and conventional semblance analysis. In the final step, the evaluation and update of the velocities by investigation of common image gathers for the main target reflectors were used. Although for our data set the reflections from the mineralization show a strong coherency and continuity in the seismic section, reflective structures in a hardrock environment are typically less continuous. In order to image the internal structure of the mineralization and decipher the surrounding structures, we applied the concept of reflection image spectroscopy to the data, which allows the imaging of wavelength-specific characteristics within the reflective body. As a result, conjugate crossing faults around the mineralization can directly be imaged in a low-frequency band while the internal structure was obtained within the high-frequency bands.  相似文献   
269.
Modelling topological relationships between places and events is challenging especially because these relationships are dynamic, and their evolutionary analysis relies on the explanatory power of representing their interactions across different temporal resolutions. In this paper, we introduce the Space-Time Varying Graph (STVG) based on the whole graph approach that combines directed and bipartite subgraphs with a time-tree for representing the complex interaction between places and events across time. We demonstrate how the proposed STVG can be exploited to identify and extract evolutionary patterns of traffic accidents using graph metrics, ad-hoc graph queries and clustering algorithms. The results reveal evolutionary patterns that uncover the places with high incidence of accidents over different time resolutions, reveal the main reasons why the traffic accidents have occurred, and disclose evolving communities of densely connected traffic accidents over time.  相似文献   
270.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号