首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   237篇
  免费   12篇
  国内免费   4篇
测绘学   9篇
大气科学   4篇
地球物理   72篇
地质学   109篇
海洋学   7篇
天文学   30篇
综合类   9篇
自然地理   13篇
  2023年   2篇
  2022年   4篇
  2021年   10篇
  2020年   11篇
  2019年   11篇
  2018年   17篇
  2017年   20篇
  2016年   27篇
  2015年   11篇
  2014年   19篇
  2013年   28篇
  2012年   13篇
  2011年   19篇
  2010年   8篇
  2009年   7篇
  2008年   10篇
  2007年   7篇
  2006年   4篇
  2005年   7篇
  2004年   1篇
  2003年   3篇
  2001年   2篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1995年   1篇
  1994年   2篇
  1992年   1篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1983年   1篇
排序方式: 共有253条查询结果,搜索用时 15 毫秒
71.

Tunneling is often unpopular with local residents and environmentalists, and can cause aquifer damage. Tunnel sealing is sometimes used to avoid groundwater leakage into the tunnel, thereby mitigating the damage. Due to the high cost of sealing operations, a detailed hydrogeological investigation should be conducted as part of the tunneling project to determine the impact of sealing, and groundwater modeling is an accurate method that can aid decision-making. Groundwater-level drawdown induced by the construction of the Headrace water-conveyance tunnel in Sri Lanka dried up 456 wells. Due to resulting socio-environmental problems, tunnel sealing was decided as a remedy solution. However, due to the expectation of significant delays and high costs of sealing, and because the water pressure in the tunnel may prevent groundwater seepage into the tunnel during operation, there was another (counter) decision that the tunnel could remain unsealed. This paper describes groundwater modeling carried out using MODFLOW to determine which option—sealed or unsealed tunnel—is more effective in groundwater level recovery. The Horizontal Flow Barrier and River packages of MODFLOW were used to simulate sealed and unsealed tunnels, respectively. The simulation results showed that only through tunnel sealing can the groundwater level be raised to preexisting levels after 18 years throughout the study area. If the tunnel remains unsealed, about 1 million m3/year of water conveyed by the tunnel will seep into the aquifer, reducing the operational capacity of the tunnel as a transport scheme. In conclusion, partial tunnel sealing in high-impact sections is recommended.

  相似文献   
72.
73.
Determination of different facies in an underground reservoir with the aid of various applicable neural network methods can improve the reservoir modeling. Accordingly facies identification from well logs and cores data information is considered as the most prominent recent tasks of geological engineering. The aim of this study is to analyze and compare the five artificial neural networks (ANN) approaches with identification of various structures in a rock facies and evaluate their capability in contrast to the labor intensive conventional method. The selected networks considered are Backpropagation Neural Networks (BPNN), Radial Basis Function (RBF), Probabilistic Neural Networks (PNN), Competitive Learning (CL) and Learning Vector Quantizer (LVQ). All these methods have been applied in four wells of South Pars field, Iran. Data of three wells were employed for the networks training purpose and the fourth one was used to test and verify the trained network predictions. The results have demonstrated that all approaches have the ability of facies modeling with more than 65% of precision. According to the performed analysis, RBF, CL and LVQ methods could model the facies with the accuracy between 66 and 68 percent while PNN and BPNN techniques are capable of making predictions with more than 72% and 88.5% of precision, respectively. It can be concluded that the BPNN can generate most accurate results in comparison to the other type of networks but it is important to note that the other factors such as consuming the amount of time taken, simplicity and the less adjusted parameters as well as the acquired precisions should be considered. As a result, the model evaluation analysis used in this study can be useful for prospective surveys and cost benefit facies identification.  相似文献   
74.
Several investigations have recently considered the possible impacts of climate change and seawater level rise on seawater intrusion in coastal aquifers. All have revealed the severity of the problem and the significance of the landward movement of the dispersion zone under the condition of seawater level rise. Most of the studies did not consider the possible effects of the seawater rise on the inland movement of the shoreline and the associate changes in the boundary conditions at the seaside and the domain geometry. Such effects become more evident in flat, low land, coastal alluvial plans where large areas might be submerged with seawater under a relatively small increase in the seawater level. None of the studies combined the effect of increased groundwater pumping, due to the possible decline in precipitation and shortage in surface water resources, with the expected landward shift of the shore line. In this article, the possible effects of seawater level rise in the Mediterranean Sea on the seawater intrusion problem in the Nile Delta Aquifer are investigated using FEFLOW. The simulations are conducted in horizontal view while considering the effect of the shoreline landward shift using digital elevation models. In addition to the basic run (current conditions), six different scenarios are considered. Scenarios one, two, and three assume a 0.5 m seawater rise while the total pumping is reduced by 50%, maintained as per the current conditions and doubled, respectively. Scenarios four, five, and six assume a 1.0 m seawater rise and the total pumping is changed as in the first three scenarios. The shoreline is moved to account for the seawater rise and hence the study domain and the seaside boundary are modified accordingly. It is concluded that, large areas in the coastal zone of the Nile Delta will be submerged by seawater and the coast line will shift landward by several kilometers in the eastern and western sides of the Delta. Scenario six represents the worst case under which the volume of freshwater will be reduced to about 513 km3 (billion m3).  相似文献   
75.
The pollution of underground and surface water streams is a tremendous environmental problem. Adsorption, in which activated carbon (AC) is used as an adsorbent, is one of efficient procedures to remove organic and inorganic pollutants from industrial wastewaters. Activated carbon fiber (ACF), a newly developed form of AC, has high adsorption rate and surface area and can be used for the treatment of industrial wastewaters. In this work, ACF was prepared by physicochemical activation method from kenaf and we studied its ability in the treatment of indigo‐containing wastewater produced from a dying factory. The filtered wastewater was treated via adsorption by ACF, and response surface experimental design method was used to study the effect of ACF dosage, contact time, temperature, and pH of the wastewater on the removal process. ACF dosage of 0.256 g, temperature of 12.5°C, pH 8.5, and contact time of 125 min were optimum treatment conditions. The adsorption process obeys pseudo‐second‐order kinetic and Freundlich isotherm models.  相似文献   
76.
Approximate formulas for rotational effects in earthquake engineering   总被引:1,自引:0,他引:1  
The paper addresses the issue of researching into the engineering characteristics of rotational strong ground motion components and rotational effects in structural response. In this regard, at first, the acceleration response spectra of rotational components are estimated in terms of translational ones. Next, new methods in order to consider the effects of rotational components in seismic design codes are presented by determining the effective structural parameters in the rotational loading of structures due only to the earthquake rotational components. Numerical results show that according to the frequency content of rotational components, the contribution of the rocking components to the seismic excitation of short period structures can never be ignored. During strong earthquakes, these rotational motions may lead to the unexpected overturning or local structural damages for the low-rise multi-story buildings located on soft soil. The arrangement of lateral-load resisting system in the plan, period, and aspect ratio of the system can severely change the seismic loading of wide symmetric buildings under the earthquake torsional component.  相似文献   
77.
78.
79.
Identification and assessment of climate change in the next decades with the aim of appropriate environmental planning in order to adapt and mitigate its effects are quite necessary. In this study, maximum temperature changes of Iran were comparatively examined in two future periods (2041-2070 and 2071-2099) and based on the two general circulation model outputs (CGCM3 and HADCM3) and under existing emission scenarios (A2, A1B, B1 and B2). For this purpose, after examining the ability of statistical downscaling method of SDSM in simulation of the observational period (1981-2010), the daily maximum temperature of future decades was downscaled by considering the uncertainty in seven synoptic stations as representatives of climate in Iran. In uncertainty analysis related to model-scenarios, it was found that CGCM3 model under scenario B1 had the best performance about the simulation of future maximum temperature among all of the examined scenario-models. The findings also showed that the maximum temperature at study stations will be increased between 1°C and 2°C in the middle and the end of 21st century. Also this maximum temperature changes is more severe in the HADCM3 model than the CGCM3 model.  相似文献   
80.
Complicated sedimentary processes control the spatial distribution of geological heterogeneities. This serves to make the nature of the fluid flow in the hydrocarbon reservoirs immensely complex. Proper modeling of these heterogeneities and evaluation of their connectivity are crucial and affects all aspects of fluid flow. Since the natural variability of heterogeneity occurs in a myriad of length scales, accurate modeling of the rock type connectivity requires a very fine scheme, which is computationally very expensive. Hence, this makes other alternative methods such as the percolation approach attractive and necessary. The percolation approach considers the hypothesis that a reservoir can be split into either permeable (sand/fracture) or impermeable rocks (shale/matrix). In this approach, the connectivity of the permeable fraction governs the flow. This method links the global properties of the system to the density of the permeable objects distributed randomly in the system. Moreover, this approach reduces many results to some simple master curves from which all-possible outcomes can be predicted by simple algebraic transformations. The current study contributes to extending the applicability of the methodology to anisotropic systems as well as using the complicated and more realistic sandbody shapes (for example, ellipsoids). This enables us to attain a better assessment of the connectivity and its associated uncertainty of the complicated rock types. Furthermore, to validate the approach, the Burgan reservoir dataset of the Norouz offshore oil field in the south of Iran was used. The findings are in conformity with the percolation approach predictions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号