首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1337篇
  免费   74篇
  国内免费   47篇
测绘学   77篇
大气科学   73篇
地球物理   428篇
地质学   685篇
海洋学   58篇
天文学   48篇
综合类   16篇
自然地理   73篇
  2024年   4篇
  2023年   5篇
  2022年   50篇
  2021年   68篇
  2020年   87篇
  2019年   55篇
  2018年   142篇
  2017年   121篇
  2016年   151篇
  2015年   83篇
  2014年   112篇
  2013年   146篇
  2012年   84篇
  2011年   80篇
  2010年   53篇
  2009年   38篇
  2008年   31篇
  2007年   21篇
  2006年   24篇
  2005年   3篇
  2004年   17篇
  2003年   8篇
  2002年   7篇
  2001年   8篇
  2000年   5篇
  1999年   2篇
  1998年   3篇
  1997年   2篇
  1996年   4篇
  1995年   2篇
  1994年   1篇
  1993年   2篇
  1992年   1篇
  1991年   3篇
  1990年   6篇
  1989年   6篇
  1988年   1篇
  1986年   2篇
  1985年   3篇
  1984年   2篇
  1983年   2篇
  1982年   1篇
  1980年   1篇
  1979年   1篇
  1977年   1篇
  1976年   1篇
  1973年   1篇
  1972年   2篇
  1971年   4篇
  1969年   1篇
排序方式: 共有1458条查询结果,搜索用时 15 毫秒
81.
Tracer breakthrough curves provide valuable information about the traced media, especially in inherently heterogeneous karst aquifers. In order to study the effect of variations in hydraulic gradient and conduit systems on breakthrough curves, a bench scale karst model was constructed. The bench scale karst model contains both matrix and a conduit. Eight tracing tests were conducted under a wide range of hydraulic gradients from 1 to greater than 5 for branchwork and network-conduit systems. Sampling points at varying distances from the injection point were utilized. Results demonstrate that mean tracer velocities, tracer mass recovery and linear rising slope of the breakthrough curves were directly controlled by hydraulic gradient. As hydraulic gradient increased, both one half the time for peak concentration and one fifth the time for peak concentration decreased. The results demonstrate the variations in one half the time for peak concentration and one fifth the time for peak concentration of the descending limb for different sampling points under differing hydraulic gradients are mainly controlled by the interactions of advection with dispersion. The results are discussed from three perspectives: different conduit systems, different hydraulic-gradient conditions, and different sampling points. The research confirmed the undeniable role of hydrogeological setting (i.e., hydraulic gradient and conduit system) on the shape of the breakthrough curve. The extracted parameters (mobile-fluid velocity, tracer-mass recovery, linear rising limb, one half the time for peak concentration, and one fifth the time for peak concentration) allow for differentiating hydrogeological settings and enhance interpretations the tracing tests in karst aquifers.  相似文献   
82.
In the context of geological carbon sequestration (GCS), carbon dioxide (CO2) is often injected into deep formations saturated with a brine that may contain dissolved light hydrocarbons, such as methane (CH4). In this multicomponent multiphase displacement process, CO2 competes with CH4 in terms of dissolution, and CH4 tends to exsolve from the aqueous into a gaseous phase. Because CH4 has a lower viscosity than injected CO2, CH4 is swept up into a ‘bank’ of CH4‐rich gas ahead of the CO2 displacement front. On the one hand, this may provide a useful tracer signal of an approaching CO2 front. On the other hand, the emergence of gaseous CH4 is undesirable because it poses a leakage risk of a far more potent greenhouse gas than CO2 if the cap rock is compromised. Open fractures or faults and wells could result in CH4 contamination of overlying groundwater aquifers as well as surface emissions. We investigate this process through detailed numerical simulations for a large‐scale GCS pilot project (near Cranfield, Mississippi) for which a rich set of field data is available. An accurate cubic‐plus‐association equation‐of‐state is used to describe the non‐linear phase behavior of multiphase brine‐CH4‐CO2 mixtures, and breakthrough curves in two observation wells are used to constrain transport processes. Both field data and simulations indeed show the development of an extensive plume of CH4‐rich (up to 90 mol%) gas as a consequence of CO2 injection, with important implications for the risk assessment of future GCS projects.  相似文献   
83.
In this study, we calculate accurate absolute locations for nearly 3,000 shallow earthquakes (≤20 km depth) that occurred from 1996 to 2010 in the Central Alborz region of northern Iran using a non-linear probabilistic relocation algorithm on a local scale. We aim to produce a consistent dataset with a realistic assessment of location errors using probabilistic hypocenter probability density functions. Our results indicate significant improvement in hypocenter locations and far less scattering than in the routine earthquake catalog. According to our results, 816 earthquakes have horizontal uncertainties in the 0.5–3.0 km range, and 981 earthquakes are relocated with focal-depth errors less than 3.0 km, even with a suboptimal network geometry. Earthquake relocated are tightly clustered in the eastern Tehran region and are mainly associated with active faults in the study area (the Mosha and Garmsar faults). Strong historical earthquakes have occurred along the Mosha and Garmsar faults, and the relocated earthquakes along these faults show clear north-dipping structures and align along east–west lineations, consistent with the predominant trend of faults within the study region. After event relocation, all seismicity lies in the upper 20 km of the crust, and no deep seismicity (>20 km depth) has been observed. In many circumstances, the seismicity at depth does not correlate with surface faulting, suggesting that the faulting at depth does not directly offset overlying sediments.  相似文献   
84.
Source apportionment of particulate matter <10 µm in diameter (PM10), having considerable impacts on human health and the environment, is of high priority in air quality management. The present study, therefore, aimed at identifying the potential sources of PM10 in an arid area of Ahvaz located in southwest of Iran. For this purpose, we collected 24‐h PM10 samples by a high volume air sampler. The samples were then analyzed for their elemental (Al, As, B, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Hg, K, Mg, Mn, Na, Ni, Pb, Se, Si, Sn, Sr, Li, Ti, V, Zn, Mo, and Sb) and ionic (NH, Cl?, NO, and SO) components using inductively coupled plasma optical emission spectrometry and ion chromatography instruments, respectively. Eight factors were identified by positive matrix factorization: crustal dust (41.5%), road dust (5.5%), motor vehicles (11.5%), marine aerosol (8.0%), secondary aerosol (9.5%), metallurgical plants (6.0%), petrochemical industries and fossil fuel combustion (13.0%), and vegetative burning (5.0%). Result of this study suggested that the natural sources contribute most to PM10 particles in the area, followed closely by the anthropogenic sources.  相似文献   
85.
This paper revisits the phenomenon of dynamic soil‐structure interaction (SSI) with a probabilistic approach. For this purpose, a twofold objective is pursued. First, the effect of SSI on inelastic response of the structure is studied considering the prevailing uncertainties. Second, the consequence of practicing SSI provisions of the current seismic design codes on the structural performance is investigated in a probabilistic framework. The soil‐structure system is modeled by the sub‐structure method. The uncertainty in the properties of the soil and the structure is described by random variables that are input to this model. Monte Carlo sampling analysis is employed to compute the probability distribution of the ductility demand of the structure, which is selected as the metrics for the structural performance. In each sample, a randomly generated soil‐structure system is subjected to a randomly selected and scaled ground motion. To comprehensively model the uncertainty in the ground motion, a suite of 3269 records is employed. An extensive parametric study is conducted to cover a wide range of soil‐structure systems. The results reveal the probability that SSI increases the ductility demand of structures designed based on the conventional fixed‐based assumption but built on flexible soil in reality. The results also show it is highly probable that practicing SSI provisions of modern seismic codes increase the ductility demand of the structure. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
86.
Numerical studies have been conducted for low- and medium-rise rocking structures to investigate their efficiency as earthquake-resisting systems in comparison with conventional structures. Several non-linear time-history analyses have been performed to evaluate seismic performance of selected cases at desired ground shaking levels, based on key parameters such as total and flexural story drifts and residual deformations. The Far-field record set is selected as input ground motions and median peak values of key parameters are taken as best estimates of system response. In addition, in order to evaluate the probability of exceeding relevant damage states, analytical fragility curves have been developed based on the results of the incremental dynamic analysis procedure. Small exceedance probabilities and acceptable margins against collapse, together with minor associated damages in main structural members, can be considered as superior seismic performance for medium-rise rocking systems. Low-rise rocking systems could provide significant performance improvement over their conventional counterparts notwithstanding certain weaknesses in their seismic response.  相似文献   
87.
88.
Transient Capture Zone for a Single Well   总被引:1,自引:0,他引:1  
  相似文献   
89.
The attenuation properties of eight rheological models have been studied theoretically. The expressions forQ have been obtained by using dissipated and stored energies and/or complex modulus for each model. The dependence ofQ on frequency has been demonstrated. The three-element elastic model appears to be the best one to represent the viscoelastic nature of the earth's material for a finite value ofQ.  相似文献   
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号