首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   231篇
  免费   4篇
  国内免费   2篇
测绘学   3篇
大气科学   18篇
地球物理   40篇
地质学   60篇
海洋学   15篇
天文学   75篇
综合类   7篇
自然地理   19篇
  2022年   3篇
  2021年   4篇
  2020年   5篇
  2019年   3篇
  2018年   9篇
  2017年   3篇
  2016年   10篇
  2015年   8篇
  2014年   14篇
  2013年   10篇
  2012年   5篇
  2011年   17篇
  2010年   8篇
  2009年   14篇
  2008年   17篇
  2007年   16篇
  2006年   8篇
  2005年   3篇
  2004年   4篇
  2003年   8篇
  2002年   10篇
  2001年   4篇
  2000年   6篇
  1999年   3篇
  1998年   4篇
  1997年   3篇
  1996年   5篇
  1995年   11篇
  1994年   2篇
  1993年   5篇
  1992年   3篇
  1991年   1篇
  1986年   1篇
  1984年   1篇
  1979年   3篇
  1977年   1篇
  1976年   1篇
  1974年   3篇
  1970年   1篇
排序方式: 共有237条查询结果,搜索用时 15 毫秒
171.
Kazakov  Mikhail  Tinyakova  Viktoriya 《GeoJournal》2021,86(3):1109-1119
GeoJournal - The article provides the solution to the heuristic problem of formation and practical approval of methodology for local immunity components’ research within a complex diagnostics...  相似文献   
172.
173.
This paper addresses the spatial and temporal patterns of drivers for sediment dynamics in coastal areas. The basic assumption is that local processes are dominating. The focus is put on the bed shear stress in the southern part of North Sea giving the basic control for deposition–sedimentation and resuspension–erosion. The wave-induced bed shear stress is formulated using a model based on the concept that the turbulent kinetic energy associated with surface waves is a function of orbital velocity, the latter depending on the wave height and period, as well as on the water depth. Parameters of surface waves are taken from simulations with the wave spectrum model WAM (wave model). Bed shear stress associated with currents is simulated with a 3D primitive equation model, Hamburg Shelf Ocean Model. Significant wave height, bed shear stress due to waves and currents, is subjected to empirical orthogonal functions (EOF) analysis. It has been found that the EOF-1 of significant wave height represents the decrease of significant wave height over the shallows and, due to fetch limitation, along the coastlines. Higher order modes are seesaw-like and, in combination, display a basin-scale rotational pattern centred approximately in the middle of the basin. Similar types of variability is also observed in the second and third EOF of bed shear stress. Surface concentrations of suspended matter derived from MERIS satellite data are analysed and compared against statistical characteristics of bed shear stress. The results show convincingly that the horizontal distribution of sediment can, to a larger extent, be explained by the local shear stress. However, availability of resuspendable sediments on the bottom is quite important in some areas like the Dogger Bank.  相似文献   
174.
Assessments of the molecular and isotopic composition of hydrate-bound and dissolved gases in pore water were conducted during the multi-phase gas hydrate project (MHP-09) cruise VER09-03 to the southern basin of Lake Baikal in September 2009. To avoid changes in gas composition during core sampling and transport, various headspace methods were investigated aimed at preserving the dissolved gases in pore water. When distilled water was added to the sediment samples, the concentrations of carbon dioxide and oxygen decreased because of dissolution into the water and/or microbial consumption. When the headspace was not flushed with inert gases, trace levels of hydrogen and ethylene were detected. The findings suggest that best preparation is achieved by flushing the headspace with helium, and adding a saturated aqueous solution of sodium chloride. This improved headspace method served to examine the molecular and isotopic compositions of gas samples retrieved at several new sites in the southern basin. Methane was the major component, and the proportion of ethane ranged widely from 0.0009 to 1.67?mol% of the total hydrocarbon gases. The proportions of propane and higher hydrocarbons were small or less than their detection limits. The carbon isotope signatures suggest that microbial-sourced methane and ethane were dominant in the Peschanka study area, whereas ethane was of thermogenic origin at all other study sites in the southern basin of Lake Baikal.  相似文献   
175.
In this paper, we propose to compare different declustering methods on the basis of the time-correlation and the space-clustering of the residual earthquake catalog after the declustering techniques have been applied. To this aim, we applied two point process clustering measures, the Allan Factor and the Morisita Index, for the identification and quantification of temporal correlation and spatial clustering in point processes, respectively. We used our joint space–time approach to study the earthquake space–time point processes of southern California and Switzerland with surrounding area, declustered by using the method of Gardner and Knopoff (with Grünthal and Uhmhammer window) and that of Reasenberg (with different setting parameters). Our results show that the residual declustered catalog is still characterized by time-correlated structures at long timescales; however, the cutoff timescale that is the lowest timescale above which the time-correlation is visible is higher with the Reasenberg method while is smaller with the Gardner and Knopoff method with Grünthal window. The space-clustering analysis performed by means of the Morisita Index suggests that the declustering technique effectively reduces the spatial clustering of the seismicity of Switzerland, but does not change the spatial properties of the residual seismic catalogue of the southern California.  相似文献   
176.
177.
In July 2004, dominant populations of microbial ultraplankton (<5 μm), in the surface of the Celtic Sea (between UK and Eire), were repeatedly mapped using flow cytometry, at 1.5 km resolution over a region of diameter 100 km. The numerically dominant representatives of all basic functional types were enumerated including one group of phototrophic bacteria (Syn), two groups of phytoplankton (PP, NP), three groups of heterotrophic bacterioplankton (HB) and the regionally dominant group of heterotrophic protists (HP).The distributions of all organisms showed strong spatial variability with little relation to variability in physical fields such as salinity and temperature. Furthermore, there was little agreement between distributions of different organisms. The only linear correlation consistently explaining more than 50% of the variance between any pairing of the organism groups enumerated is between two different groups of HB. Specifically, no linear, or non-linear, relationship is found between any pairings of SYB, PP or HB groups with their protist predators HP. Looking for multiple dependencies, factor analysis reveals three groupings: Syn, PP and low nucleic acid content HB (LNA); high nucleic acid content HB (HNA); HP and NP. Even the manner in which the spatial variability of Syn, PP and HB abundance varies as a function of lengthscale (represented by a semivariogram) differs significantly from that for HP. In summary, although all microbial planktonic groups enumerated are present and numerically dominant throughout the region studied, at face value the relationships between them seem weak.Nevertheless, the behaviour of a simple, illustrative ecological model, with strongly interacting phototrophs and heterotrophs, with stochastic forcing, is shown to be consistent with the observed poor correlations and differences in how spatial variability varies with lengthscale. Thus, our study suggests that a comparison of microbial abundances alone may not discern strong underlying trophic interactions. Specific knowledge of these processes, in particular grazing, will be required to explain the causes of the observed microbial spatial variability and its resulting consequences for the functioning of the ecosystem.  相似文献   
178.
The Weather Research and Forecasting (WRF) model can be used to simulate atmospheric processes ranging from quasi-global to tens of m in scale. Here we employ large-eddy simulation (LES) using the WRF model, with the LES-domain nested within a mesoscale WRF model domain with grid spacing decreasing from 12.15 km (mesoscale) to 0.03 km (LES). We simulate real-world conditions in the convective planetary boundary layer over an area of complex terrain. The WRF-LES model results are evaluated against observations collected during the US Department of Energy-supported Columbia Basin Wind Energy Study. Comparison of the first- and second-order moments, turbulence spectrum, and probability density function of wind speed shows good agreement between the simulations and observations. One key result is to demonstrate that a systematic methodology needs to be applied to select the grid spacing and refinement ratio used between domains, to avoid having a grid resolution that falls in the grey zone and to minimize artefacts in the WRF-LES model solutions. Furthermore, the WRF-LES model variables show large variability in space and time caused by the complex topography in the LES domain. Analyses of WRF-LES model results show that the flow structures, such as roll vortices and convective cells, vary depending on both the location and time of day as well as the distance from the inflow boundaries.  相似文献   
179.
The Pertuis Charentais are shallow coastal embayments formed by the islands of Oleron and Re in the north-eastern Bay of Biscay. The low-lying coasts of the Pertuis Charentais are susceptible to extensive flooding caused by the storm surges generated in the North Atlantic. Numerical modelling of the 24 October 1999 surge event is performed in the present study in order to elucidate the impact of the wind-wave-tide-surge interactions on the surge propagation in the Pertuis Charentais. A 2D numerical model is constructed to simulate the wave and tide-surge propagation on a high-resolution finite-element grid by using the TELEMAC and TOMAWAC software. The effect of the wave-induced enhancement on the sea surface drag and on the bottom friction is evaluated by using the models of Janssen (1991) and Christoffersen and Jonsson (1985), respectively. The radiation stress is estimated by employing the approach of Longuet-Higgins and Stewart (1964). It is demonstrated that the peak surge in the night on 23–24 October has been amplified inside the Pertuis Charentais by about 20 cm due to the wind-wave interactions with the tide-surge currents. These interactions are strongest at the entrance to the Pertuis Charentais where the sea surface drag coefficient is significantly increased by the wind-wave coupling. The effect of the wave-tide-surge interactions is large enough to be included in the flood forecasting systems of this region.  相似文献   
180.
Recent studies suggest the occurrence of sporadic episodes during which the ice streams that discharge ice sheets become enormously active, producing large numbers of icebergs (reflected in North Atlantic sea cores as Heinrich events) and possibly causing the partial collapse of the ice sheets. To simulate the mechanism of internal thermo-hydrodynamical instability implied by such behavior in the context of a more general paleoclimate dynamics model (PDM), we introduce a new sliding-catastrophe function that can account for ice-sheet surges. In particular, using simple scaling estimates derived from the equations of motion and thermo-conductivity for ice flow, we express this function in terms of the thickness, density, viscosity, heat-capacity, and heat-conductivity of ice. Analysis of the properties of this function suggests that these Heinrich-type instability events might be of three possible kinds: the first type of event occurs in periods of glacial maximum when temperature conditions on the ice surface are extremely cold, but internal friction within bottom boundary layer is also at its maximum and is strong enough to melt ice and cause its surge. The second type of event may happen during an interglacial, when the ice thickness is small but relatively warm climatic conditions on the upper surface of ice can be easily advected with the flow of ice to the bottom where even a small additional heating due to friction may cause melting. The third and, perhaps, most interesting type of event is one that may occur during ice sheet growth; in this period particles of ice reaching the bottom still remember the warm temperature conditions of the previous interglacial and additional heating due to increasing friction associated with the growing ice sheet may again cause melting. To the extent that the upper glacier surface temperature depends on atmospheric carbon dioxide concentration, this third case introduces the interesting possibility that earlier CO2 concentrations may be as important for the present-day climate as its current value. We present results of numerical experiments demonstrating how these three kinds of instability can originate and interact with other components of the global climate system to produce variations of the Heinrich-event type. In particular, according to our model the climate system seems more vulnerable to surges during the penultimate interglacial period than in the present one, which may contribute to an explanation of the recent results of the Greenland Ice Core Project.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号