The seismic probing of the crust and upper mantle in Canada started in 1938 and since then has involved many government and university groups using a wide variety of techniques. These have included simple profiling with both wide and narrow station spacing, areal time-term surveys, detailed deep reflection experiments, very long-range refraction studies and the analysis of surface wave dispersion between stations of the Canadian Standard Network.
A review of the published interpretation leads to the general conclusion that:
1. (1) Pn-velocities vary from a value possibly as low as 7.7 km/sec under Vancouver Island to 8.6 km/sec and higher in the extreme eastern part of the shield and some parts of the Atlantic coast.
2. (2) Large areas of Canada have a crustal thickness of 30–40 km, with Vancouver Island, the southwestern Prairies, the Lake Superior basin and parts of the eastern shield of Quebec being thicker. No continental area in Canada is known to have a crust thinner than 29 km.
3. (3) The Riel discontinuity — a deep intra-crustal reflector and sometime refractor, is widely reported in the Prairies and Manitoba. It is not seen to the north in the vicinity of Great Slave Lake, nor in the Hudson Bay, Lake Superior and Maritime regions, nor in the interior of British Columbia. It may be present in some areas of the eastern shield.
4. (4) As experiments have become more detailed, crustal structures of greater complexity have been revealed. The concept that crustal structure becomes simpler with increasing depth is apparently unfounded.
Long-range refraction studies suggest that the Gutenberg P-wave low-velocity channel is poorly developed under the Canadian Shield. The analysis of the dispersion of surface waves, however, suggests that the channel is better developed for S-waves, and is present throughout the country. The lid of the channel is deepest under the central shield and shallowest under the Cordillera. 相似文献
We present a study of the long-term evolution of the cloud of aerosols produced in the atmosphere of Jupiter by the impact of an object on 19 July 2009 (Sánchez-Lavega, A. et al. [2010]. Astrophys. J. 715, L155-L159). The work is based on images obtained during 5 months from the impact to 31 December 2009 taken in visible continuum wavelengths and from 20 July 2009 to 28 May 2010 taken in near-infrared deep hydrogen-methane absorption bands at 2.1-2.3 μm. The impact cloud expanded zonally from ∼5000 km (July 19) to 225,000 km (29 October, about 180° in longitude), remaining meridionally localized within a latitude band from 53.5°S to 61.5°S planetographic latitude. During the first two months after its formation the site showed heterogeneous structure with 500-1000 km sized embedded spots. Later the reflectivity of the debris field became more homogeneous due to clump mergers. The cloud was mainly dispersed in longitude by the dominant zonal winds and their meridional shear, during the initial stages, localized motions may have been induced by thermal perturbation caused by the impact’s energy deposition. The tracking of individual spots within the impact cloud shows that the westward jet at 56.5°S latitude increases its eastward velocity with altitude above the tropopause by 5-10 m s−1. The corresponding vertical wind shear is low, about 1 m s−1 per scale height in agreement with previous thermal wind estimations. We found evidence for discrete localized meridional motions with speeds of 1-2 m s−1. Two numerical models are used to simulate the observed cloud dispersion. One is a pure advection of the aerosols by the winds and their shears. The other uses the EPIC code, a nonlinear calculation of the evolution of the potential vorticity field generated by a heat pulse that simulates the impact. Both models reproduce the observed global structure of the cloud and the dominant zonal dispersion of the aerosols, but not the details of the cloud morphology. The reflectivity of the impact cloud decreased exponentially with a characteristic timescale of 15 days; we can explain this behavior with a radiative transfer model of the cloud optical depth coupled to an advection model of the cloud dispersion by the wind shears. The expected sedimentation time in the stratosphere (altitude levels 5-100 mbar) for the small aerosol particles forming the cloud is 45-200 days, thus aerosols were removed vertically over the long term following their zonal dispersion. No evidence of the cloud was detected 10 months after the impact. 相似文献
During MONTBLEX 1990, various observational platforms were operated at Kharagpur and the nearby Kalaikunda Air Base. Using the data from all the platforms, one can draw the following conclusions. The temperature and wind data obtained from various sensors have overall compatibility. Sodar wind data indicate the presence of a low level jet at around 300 m above ground. The inversion height may be evaluated from the vertical profile of the sodar back-scatter echo intensity. The sub-synoptic or synoptic scale convergence modulates the inversion height and the presence of cloud-base within the inversion height in turn modulates the sensible heat and momentum fluxes. 相似文献
Summary The continuous wavelet transform provides a suitable tool to visualize the vertical structure of turbulence and to detect coherent structures in turbulent time series. This is demonstrated with a simple example of an artificially ramp structured time series. In this study turbulence data, i.e. the fluctuations of the horizontal wind components u′ and v′, the vertical component w′ and temperature T′, sampled with 20.83 Hz and measured simultaneously at three levels (z/h=1.5, 2.1 and 3.2, with z as the sensor height and h the height of the roughness elements) over an urban canopy in the inner city of Basel, Switzerland, are analyzed. The detection of the coherent structures was performed using the Mexican hat wavelet and the zero-crossing method. The analysis for unstable conditions shows that organized structures (ejection-sweep cycles) cover about 45% of the total run time. A conditional average from a total of 116 detected ejection-sweep sequences during 7 hours was calculated over a time window of 100 seconds. This dominating time scale was derived from peak frequencies of the wavelet spectra as well as from the Fourier spectra. It is shown that the normalized amplitudes of fluctuations of temperature and longitudinal wind speed during the events are largest at the lowest measurement level just above the canopy and decrease with increasing distance from the roughness elements. A comparison of related studies over different non-urban surfaces (mainly forests) shows that the shape of conditionally averaged ejection-sweep sequences is very similar for all canopies, however, the dominating time scale in general increases the rougher the surface is and the higher the roughness elements are. 相似文献
The Rum Layered Suite (NW Scotland) is generally regarded as one of a handful of classic examples of open‐system layered mafic‐ultramafic intrusions, or ‘fossilized’ basaltic magma chambers, world‐wide. The eastern portion of the Rum intrusion is constructed of sixteen repeated, coupled, peridotite–troctolite units. Each major cyclic unit has been linked to a major magma replenishment event, with repeated settling out of ‘crops’ of olivine and plagioclase crystals to form the cumulate rocks. However, there are variations in the lithological succession that complicate this oversimplified model, including the presence of chromitite (>60 vol. percent Cr‐spinel) seams. The ~2 mm thick chromitite seams host significant platinum‐group element (PGE) enrichment (e.g. ~2 ppm Pt) and likely formed in situ, i.e. at the crystal mush–magma interface. Given that the bulk of the world's exploited PGE come from a layered intrusion that bears remarkable structural and lithological similarities to Rum, the Bushveld Complex (South Africa), comparisons between these intrusions raise intriguing implications for precious metal mineralization in layered intrusions. 相似文献