首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   285篇
  免费   16篇
  国内免费   8篇
测绘学   14篇
大气科学   13篇
地球物理   110篇
地质学   134篇
海洋学   17篇
天文学   8篇
综合类   3篇
自然地理   10篇
  2024年   1篇
  2023年   1篇
  2022年   8篇
  2021年   14篇
  2020年   19篇
  2019年   14篇
  2018年   36篇
  2017年   26篇
  2016年   31篇
  2015年   14篇
  2014年   25篇
  2013年   24篇
  2012年   22篇
  2011年   27篇
  2010年   15篇
  2009年   11篇
  2008年   4篇
  2007年   1篇
  2006年   1篇
  2005年   2篇
  2004年   1篇
  2002年   2篇
  2001年   1篇
  1995年   1篇
  1990年   1篇
  1989年   1篇
  1984年   2篇
  1979年   1篇
  1977年   1篇
  1974年   1篇
  1972年   1篇
排序方式: 共有309条查询结果,搜索用时 0 毫秒
41.
Petroleum products spill and leakage have become two major environmental challenges in Iran. Sampling was performed in the petroleum reservoir waste water of Tehran and Kerman Provinces of Iran. Alkane degrading bacteria were isolated by enrichment in a Bushnel–Hass medium, with hexadecane as sole source of carbon and energy. The isolated strains were identified by amplification of 16S rDNA gene and sequencing. Specific primers were used for identification of alkane hydroxylase gene. Fifteen alkane degrading bacteria were isolated and 8 strains were selected as powerful degradative bacteria. These 8 strains relate to Rhodococcus jostii, Stenotrophomonas maltophilia, Achromobacter piechaudii, Tsukamurella tyrosinosolvens, Pseudomonas fluorescens, Rhodococcus erythropolis, Stenotrophomonas maltophilia, Pseudomonas aeruginosa genera. The optimum concentration of hexadecane that allowed high growth was 2.5%. Gas chromatography results show that all strains can degrade approximately half of hexadecane in one week of incubation. All of the strains have alkane hydroxylase gene which are important for biodegradation. As a result, this study indicates that there is a high diversity of degradative bacteria in petroleum reservoir waste water in Iran.  相似文献   
42.
Three dimensional seismic operation of Gorgan Plain was studied around a well, which is situated in North of Iran following the hitting of a thin overpressure gas layer (thickness of 9.6 m), with the purpose of the accurate modeling of geological structures and determining the approximate gas storages. The geological structures of the reservoir were modeled using the seismic attributes (coherence, instantaneous amplitude and spectral decomposition (FFT)). The obtained results clearly demonstrated the shape and volume of the existing structural traps in the studied area. In order to estimate the thickness of gas layer in the 3D seismic volume and determining the gas storage, the thickness changes based on the seismic amplitudes were used because its thickness was less than the critical resolution thickness for this layer. However, due to its low thickness, the lack of indicator peak in seismic sections and strong faults of area, it was difficult to pursue this layer in the seismic volume and map its exact amplitude. Considering this issue, a new method with integrating of seismic attributes was recommended. First, the instantaneous amplitude attribute of the thin reservoir layer reflector in computed synthetic seismogram were fabricated and then the frequency regarding the highest amount (dominant frequency) was chosen by Fourier Transform. Finally, spectral decomposition (FFT) with the resulting frequency was gained over the cross-section of the layer's instantaneous amplitude attribute in the 3D seismic volume choosing a proper time window. In such a situation, an increase of its thickness was seen as its amplitude increase and the minimum gas storage of this reservoir was calculated using the area of the restricted part of high thickness (over 9.6 m).  相似文献   
43.
How to select a limited number of strong ground motion records (SGMRs) is an important challenge for the seismic collapse capacity assessment of structures. The collapse capacity is considered as the ground motion intensity measure corresponding to the drift‐related dynamic instability in the structural system. The goal of this paper is to select, from a general set of SGMRs, a small number of subsets such that each can be used for the reliable prediction of the mean collapse capacity of a particular group of structures, i.e. of single degree‐of‐freedom systems with a typical behaviour range. In order to achieve this goal, multivariate statistical analysis is first applied, to determine what degree of similarity exists between each selected small subset and the general set of SGMRs. Principal Component analysis is applied to identify the best way to group structures, resulting in a minimum number of SGMRs in a proposed subset. The structures were classified into six groups, and for each group a subset of eight SGMRs has been proposed. The methodology has been validated by analysing a first‐mode‐dominated three‐storey‐reinforced concrete structure by means of the proposed subsets, as well as the general set of SGMRs. The results of this analysis show that the mean seismic collapse capacity can be predicted by the proposed subsets with less dispersion than by the recently developed improved approach, which is based on scaling the response spectra of the records to match the conditional mean spectrum. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
44.
45.
The problem of incorporating the available seismological information provided by the major events of the historical catalog with those for the short period of instrumental data is investigated. Assuming that the frequency-magnitude law of Gutenberg and Richter is valid for both periods, an estimation procedure for the main parameter of this law and the rate of earthquake occurrence for historical period is presented. Application of the proposed method is demonstrated, using both real and simulated data. An extension to allow for variable quality of complete data with different magnitude values is also included.  相似文献   
46.
47.
Matching pursuit belongs to the category of spectral decomposition approaches that use a pre-defined discrete wavelet dictionary in order to decompose a signal adaptively. Although disengaged from windowing issues, matching point demands high computational costs as extraction of all local structure of signal requires a large size dictionary. Thus in order to find the best match wavelet, it is required to search the whole space. To reduce the computational cost of greedy matching pursuit, two artificial intelligence methods, (1) quantum inspired evolutionary algorithm and (2) particle swarm optimization, are introduced for two successive steps: (a) initial estimation and (b) optimization of wavelet parameters. We call this algorithm quantum swarm evolutionary matching pursuit. Quantum swarm evolutionary matching pursuit starts with a small colony of population at which each individual, is potentially a transformed form of a time-frequency atom. To attain maximum pursuit of the potential candidate wavelets with the residual, the colony members are adjusted in an evolutionary way. In addition, the quantum computing concepts such as quantum bit, quantum gate, and superposition of states are introduced into the method. The algorithm parameters such as social and cognitive learning factors, population size and global migration period are optimized using seismic signals. In applying matching pursuit to geophysical data, typically complex trace attributes are used for initial estimation of wavelet parameters, however, in this study it was shown that using complex trace attributes are sensitive to noisy data and would have lower rate of convergence. The algorithm performance over noisy signals, using non-orthogonal dictionaries are investigated and compared with other methods such as orthogonal matching pursuit. The results illustrate that quantum swarm evolutionary matching pursuit has the least sensitivity to noise and higher rate of convergence. Finally, the algorithm is applied to both modelled seismograms and real data for detection of low frequency anomalies to validate the findings.  相似文献   
48.
Under condition of climate changes as global warming, monitoring and detecting trend of precipitation volume is essential and will be useful for agricultural sections. Considering the fact that there were not enough research related to precipitation volume, this study aimed to determine trends in precipitation volume, monthly and annually in different regions of Fars province for the last three decades (33?years period; 1978–2010). Fars province is located in arid and semi-arid regions of Iran, and it plays an important role in agricultural production. Inverse distance weighting interpolation method was used to provide precipitation data for all regions. To analyze the trends of precipitation volume, Mann–Kendall test, Sen’s slope estimator, and 10-year moving average low-pass filter (within time series) were used. The negative trends were identified by the Sen’s slope estimator as well as Mann–Kendall test. However, all the trends were insignificant at the surveyed confidence level (95%). With regards to the application of 10-year moving average low-pass filter, a considerable decreasing trend was observed after around year 1994. Since one of the most important restrictions in agricultural development of the Fars province is lack of sufficient water resources, any changes onward to lack of sufficient precipitation impose impressive pressure and stress on valuable resources and subsequently agricultural production.  相似文献   
49.
The Sarcheshmeh is one of the largest Oligo-Miocene porphyry Cu deposits in the world. Comparative hydrochemical, mineralogical and chemical fractionation associated with mining efflorescence salts and processing wastes of this mine are discussed. Hydrochemical results showed that rock waste dumps, reject wastes and old impoundments of tailings are the main sources of acid mine drainage waters (AMD) that contain potentially toxic metals such as Cd, Co, Cu, Mn, Ni and Zn as well as Al. Episodic fluxes of highly contaminated acidic waters were produced in a tailings dam over a short period of time. Secondary soluble minerals provide important controls on the quality of AMD produced, especially in old, dry tailings impoundments. Secondary sulfate minerals such as gypsum, magnesiocopiapite, hydronium jarosite, kornelite and coquimbite were found in rock waste drainages and in old weathered reject wastes. Highly soluble secondary minerals such as gypsum, eriochalcite, and bonattite are also observed in an evaporative layer on old tailings impoundments. Chemical fractionation patterns of potentially toxic elements showed that the geochemical behavior of metals is primarily controlled by the mineralogical composition of waste samples. Elements such as Co, Cr, Cu, Mn, Ni and Zn are readily released into the water soluble fraction from efflorescence salts associated with rock waste drainages, as well as from the evaporative layer of old tailings. Potentially toxic elements, such as As, Mo and Pb, are principally adsorbed or co-precipitated with amorphous and crystalline Fe oxides, but they may also be associated with oxidizing, primary sulfides and residual fractions. Following the development of the dammed tailings pond, the secondary minerals were dissolved, producing acidic waters contaminated by Al (154 mg L−1), Cu (150 mg L−1), Cd (0.31 m gL−1), Co (2.13 mg L−1), Mn (73.7 mg L−1), Ni (1.74 mg L−1), Zn (20.3 mg L−1) and Cl (1690 mg L−1). Therefore, the potential use of recycled water from the Sarcheshmenh dammed tailings pond is diminished by the presence of corrosive ions like Cl in highly acidic fluids that promote corrosion of pipes and pumps in the water recycling system.  相似文献   
50.
On the planar motion in the full two-body problem with inertial symmetry   总被引:1,自引:0,他引:1  
Relative motion of binary asteroids, modeled as the full two-body planar problem, is studied, taking into account the shape and mass distribution of the bodies. Using the Lagrangian approach, the equations governing the motion are derived. The resulting system of four equations is nonlinear and coupled. These equations are solved numerically. In the particular case where the bodies have inertial symmetry, these equations can be reduced to a single equation, with small nonlinearity. The method of multiple scales is used to obtain a first-order solution for the reduced nonlinear equation. The solution is shown to be sufficient when compared with the numerical solution. Numerical results are provided for different example cases, including truncated-cone-shaped and peanut-shaped bodies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号