首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   110篇
  免费   0篇
  国内免费   1篇
测绘学   2篇
大气科学   8篇
地球物理   18篇
地质学   24篇
海洋学   12篇
天文学   40篇
自然地理   7篇
  2023年   1篇
  2022年   1篇
  2021年   2篇
  2019年   2篇
  2017年   1篇
  2015年   2篇
  2014年   4篇
  2013年   6篇
  2012年   5篇
  2011年   6篇
  2010年   3篇
  2009年   7篇
  2008年   8篇
  2006年   7篇
  2005年   6篇
  2004年   4篇
  2002年   4篇
  2001年   2篇
  2000年   2篇
  1999年   4篇
  1998年   4篇
  1996年   4篇
  1995年   2篇
  1994年   1篇
  1992年   1篇
  1991年   2篇
  1990年   6篇
  1988年   2篇
  1986年   1篇
  1985年   3篇
  1984年   2篇
  1976年   2篇
  1975年   2篇
  1970年   1篇
  1969年   1篇
排序方式: 共有111条查询结果,搜索用时 31 毫秒
21.
Six new 40Ar/39Ar and three cosmogenic 36Cl age determinations provide new insight into the late Quaternary eruptive history of Erebus volcano. Anorthoclase from 3 lava flows on the caldera rim have 40Ar/39Ar ages of 23 ± 12, 81 ± 3 and 172 ± 10 ka (all uncertainties 2σ). The ages confirm the presence of a second, younger, superimposed caldera near the southwestern margin of the summit plateau and show that eruptive activity has occurred in the summit region for 77 ± 13 ka longer than previously thought. Trachyte from “Ice Station” on the eastern flank is 159 ± 2 ka, similar in age to those at Bomb Peak and Aurora Cliffs. The widespread occurrences of trachyte on the eastern flank of Erebus suggest a major previously unrecognized episode of trachytic volcanism. The trachyte lavas are chemically and isotopically distinct from alkaline lavas erupted contemporaneously in the summit region < 5 km away.  相似文献   
22.
New 40Ar-39Ar geochronology, bulk rock geochemical data, and physical characteristics for representative stratigraphic sections of rhyolite ignimbrites and lavas from the west-central Snake River Plain (SRP) are combined to develop a coherent stratigraphic framework for Miocene silicic magmatism in this part of the Yellowstone ‘hotspot track’. The magmatic record differs from that in areas to the west and east with regard to its unusually large extrusive volume, broad lateral scale, and extended duration. We infer that the magmatic systems developed in response to large-scale and repeated injections of basaltic magma into the crust, resulting in significant reconstitution of large volumes of the crust, wide distribution of crustal melt zones, and complex feeder systems for individual eruptive events. Some eruptive episodes or ‘events’ appear to be contemporaneous with major normal faulting, and perhaps catastrophic crustal foundering, that may have triggered concurrent evacuations of separate silicic magma reservoirs. This behavior and cumulative time-composition relations are difficult to relate to simple caldera-style single-source feeder systems and imply complex temporal-spatial development of the silicic magma systems. Inferred volumes and timing of mafic magma inputs, as the driving energy source, require a significant component of lithospheric extension on NNW-trending Basin and Range style faults (i.e., roughly parallel to the SW–NE orientation of the eastern SRP). This is needed to accommodate basaltic inputs at crustal levels, and is likely to play a role in generation of those magmas. Anomalously high magma production in the SRP compared to that in adjacent areas (e.g., northern Basin and Range Province) may require additional sub-lithospheric processes. Electronic supplementary material The online version of this article (doi: ) contains supplementary material, which is available to authorized users. This paper constitutes part of a special issue dedicated to Bill Bonnichsen on the petrogenesis and volcanology of anorogenic rhyolites.  相似文献   
23.
McIntosh  K.  Akbar  F.  Calderon  C.  Stoffa  P.  Operto  S.  Christeson  G.  Nakamura  Y.  Shipley  T.  Flueh  E.  Stavenhagen  A.  Leandro  G. 《Marine Geophysical Researches》2000,21(5):451-474
In March and April 1995 a cooperative German, Costa Rican, and United States research team recorded onshore-offshore seismic data sets along the Pacific margin of Costa Rica using the R/V Ewing. Off the Nicoya Peninsula we used a linear array of ocean bottom seismometers and hydrophones (OBS/H) with onshore seismometers extending across much of the isthmus. In the central area we deployed an OBS/H areal array consisting of 30 instruments over a 9 km by 35-km area and had land stations on the Nicoya Peninsula adjacent to this marine array and also extending northeast on the main Costa Rican landmass. Our goal in these experiments was to determine the crustal velocity structure along different portions of this convergent margin and to use the dense instrument deployments to create migrated reflection images of the plate boundary zone and the subducting Cocos Plate. Our specific goal in the central area was to determine whether a subducted seamount is present at the location of the 1990, M 7 earthquake off the Nicoya Peninsula and can thus be linked to its nucleation. Subsequently we have processed the data to improve reflection signals, used the data to calculate crustal velocity models, and developed several wide-aperture migration techniques, based on a Kirchhoff algorithm, to produce reflection images. Along the northern transect we used the ocean bottom data to construct a detailed crustal velocity model, but reflections from the plate boundary and top and bottom of the subducting Cocos plate are difficult to identify and have so far produced poor images. In contrast, the land stations along this same transect recorded clear reflections from the top of the subducting plate or plate boundary, within the seismogenic zone, and we have constructed a clear image from this reflector beneath the Nicoya shelf. Data from the 3-D seismic experiment suffer from high-amplitude, coherent noise (arrivals other than reflections), and we have tried many techniques to enhance the signal to noise ratio of reflected arrivals. Due to the noise, an apparent lack of strong reflections from the plate boundary zone, and probable structural complexity, the resulting 3-D images only poorly resolve the top of the subducting Cocos Plate. The images are not able to provide compelling evidence of whether there is a subducting seamount at the 1990 earthquake hypocenter. Our results do show that OBS surveys are capable of creating images of the plate boundary zone and the subducting plate well into the seismogenic zone if coherent reflections are recorded at 1.8 km instrument spacing (2-D) and 5 km inline by 1 km crossline spacing for 3-D acquisition. However, due to typical high amplitude coherent noise, imaging results may be poorer than expected, especially in unfavorable geologic settings such as our 3-D survey area. More effective noise reduction in acquisition, possibly with the use of vertical hydrophone arrays, and in processing, with advanced multiple removal and possibly depth filtering, is required to achieve the desired detailed images of the seismogenic plate boundary zone.  相似文献   
24.
We study the occurrence probability of type III radio bursts during flares as a function of the flare position on the Sun. We find that this probability peaks around 30° east of the central meridian, which points to a reciprocal tilt of the average radiation pattern of type IIIs. We argue that anisotropic scattering of the radiation by overdense coronal fibers parallel to the magnetic field is the dominant factor determining the orientation of radiation patterns. It follows that the average magnetic field appears to be tilted 30° west from the vertical. We also find that within a given active region, the average type III production rate of flares peaks 1° west of the center of gravity of all the flares of this active region.We infer that the coronal magnetic field above active regions presents a strong east-west asymmetry, resulting from the well known asymmetry at the photospheric level. As the west side of an active region covers a smaller area with stronger magnetic field than the east side, western flares are generally closer to open field lines than eastern flares. As a consequence, accelerated particles on the trailing (east) side of active regions usually stay trapped in magnetic loops, while on the leading (west) side they are more likely to escape along open lines into interplanetary space. As a result of the initial westward tilt of these open lines, we estimate that the corresponding Archimedean spiral is on average (apparently) rooted 15° west of the flare.  相似文献   
25.
40Ar/39Ar age spectra have been obtained from 85 sanidine separates from 36 ignimbrites and one rhyolitic lava in the latest Eocene-Oligocene Mogollon-Datil volcanic field of southwestern New Mexico. Of the 97 measured age spectra, 94 yield weighted-mean plateau ages each giving single-spectrum 1 precision of±0.25%–0.4% (±0.07–0.14 Ma). Replicate plateau age determinations for eight different samples show within-sample 1 precisions averaging ±0.25%. Plateau ages from multiple (n=3–8) samples of individual ignimbrites show 1 within-unit precision of ±0.1%–0.4% (±0.04–0.13 Ma). This within-unit precision represents a several-fold improvement over published K-Ar data for the same ignimbrites, and is similar to the range of precisions reported from single-crystal laser fusion studies. A further indication of the high precision of unit-mean 40Ar/30Ar ages is their close agreement with independently established stratigraphic order. Two samples failed to meet plateau criteria, apparently due to geologic contamination by older feldspars. Effects of minor contamination are shown by six other samples, which yielded slightly anomalous plateau ages. 40Ar/39Ar plateau ages permit resolution of units differing in age by 0.5% (0.15 Ma) or less. This high resolution, combined with paleomagnetic studies, has helped to correlate ignimbrites among isolated ranges and has allowed development of an integrated timestratigraphic framework for the volcanic field. Mogollon-Datil ignimbrites range in age from 36.2 to 24.3 Ma. Ignimbrite activity was strongly episodic, being confined to four brief (<2.6 m.y.) eruptive episodes separated by 1–3 m.y. gaps. Ignimbrite activity generally tended to migrate from the southeast toward the north and west.  相似文献   
26.
We present an overview of the Space Telescope A901/2 Galaxy Evolution Survey (STAGES). STAGES is a multiwavelength project designed to probe physical drivers of galaxy evolution across a wide range of environments and luminosity. A complex multicluster system at   z ∼ 0.165  has been the subject of an 80-orbit F606W Hubble Space Telescope (HST) /Advanced Camera for Surveys (ACS) mosaic covering the full     span of the supercluster. Extensive multiwavelength observations with XMM–Newton , GALEX, Spitzer , 2dF, Giant Metrewave Radio Telescope and the 17-band COMBO-17 photometric redshift survey complement the HST imaging. Our survey goals include simultaneously linking galaxy morphology with other observables such as age, star formation rate, nuclear activity and stellar mass. In addition, with the multiwavelength data set and new high-resolution mass maps from gravitational lensing, we are able to disentangle the large-scale structure of the system. By examining all aspects of an environment we will be able to evaluate the relative importance of the dark matter haloes, the local galaxy density and the hot X-ray gas in driving galaxy transformation. This paper describes the HST imaging, data reduction and creation of a master catalogue. We perform the Sérsic fitting on the HST images and conduct associated simulations to quantify completeness. In addition, we present the COMBO-17 photometric redshift catalogue and estimates of stellar masses and star formation rates for this field. We define galaxy and cluster sample selection criteria, which will be the basis for forthcoming science analyses, and present a compilation of notable objects in the field. Finally, we describe the further multiwavelength observations and announce public access to the data and catalogues.  相似文献   
27.
A well tested agricultural systems model was used together with 114 years of historical climate data to study the performance of a dryland wheat–fallow system as impacted by climate variations and nitrogen input levels in southeast Australia, and to investigate the value of: (1) historical climate knowledge, (2) a perfect climate forecast, and (3) various forecasts of targeted variables. The potential value of historical climate records increases exponentially with the number of years of data. In order to confidently quantify the long term optimal nitrogen application rate at the study site at least 30 years of climate data are required. For nitrogen management only, the potential value of a perfect climate forecast is about $54/ha/year with a reduction of excess nitrogen application of 20 kg N/ha/year. The value of an ENSO based forecast system is $2/ha/year. Perfect forecasting of three or six categories of growing season rainfall would have a value of $10–12/ha/year. Perfect forecasts of three or six categories of simulated crop yield would bring about $33–34/ha/year. Choosing integrated variables as a forecasting target, for example crop yield derived from agricultural modelling, has the potential to significantly increase the value of forecasts.  相似文献   
28.
In this study, the geochemistry and origin of natural gas and formation waters in Devonian age organic-rich shales and reservoir sandstones across the northern Appalachian Basin margin (western New York, eastern Ohio, northwestern Pennsylvania, and eastern Kentucky) were investigated. Additional samples were collected from Mississippian Berea Sandstone, Silurian Medina Sandstone and Ordovician Trenton/Black River Group oil and gas wells for comparison. Dissolved gases in shallow groundwaters in Devonian organic-rich shales along Lake Erie contain detectable CH4 (0.01–50.55 mol%) with low δ13C–CH4 values (−74.68 to −57.86‰) and no higher chain hydrocarbons, characteristics typical of microbial gas. Nevertheless, these groundwaters have only moderate alkalinity (1.14–8.72 meq/kg) and relatively low δ13C values of dissolved inorganic C (DIC) (−24.8 to −0.6‰), suggesting that microbial methanogenesis is limited. The majority of natural gases in Devonian organic-rich shales and sandstones at depth (>168 m) in the northern Appalachian Basin have a low CH4 to ethane and propane ratios (3–35 mol%; C1/C2 + C3) and high δ13C and δD values of CH4 (−53.35 to −40.24‰, and −315.0 to −174.6‰, respectively), which increase in depth, reservoir age and thermal maturity; the molecular and isotopic signature of these gases show that CH4 was generated via thermogenic processes. Despite this, the geochemistry of co-produced brines shows evidence for microbial activity. High δ13C values of DIC (>+10‰), slightly elevated alkalinity (up to 12.01 meq/kg) and low SO4 values (<1 mmole/L) in select Devonian organic-rich shale and sandstone formation water samples suggest the presence of methanogenesis, while low δ13C–DIC values (<−22‰) and relatively high SO4 concentrations (up to 12.31 mmole/L) in many brine samples point to SO4 reduction, which likely limits microbial CH4 generation in the Appalachian Basin. Together the formation water and gas results suggest that the vast majority of CH4 in the Devonian organic-rich shales and sandstones across the northern Appalachian Basin margin is thermogenic in origin. Small accumulations of microbial CH4 are present at shallow depths along Lake Erie and in western NY.  相似文献   
29.
Mount Sidley is a complex, polygenetic stratovolcano composed primarily of phonolitic and trachytic lavas and subordinate pyroclastic lithologies at the southern extremity of the Executive Committee Range, a linear chain of volcanoes in central Marie Byrd Land, Antarctica. Detailed field investigation coupled with 14 high precision 40Ar/39Ar age determinations reveal a 1.5 million year life span between 5.7 and 4.2 Ma in which three major phonolitic central vent edifices (Byrd, Weiss and Sidley volcanoes) and their calderas were developed (5.7–4.8 Ma). This was followed (4.6–4.5 Ma) by the eruption of trachytic magmas from multiple vent localities further south, and then by small volume benmoreite-mugearite lavas and tephras around 4.4–4.3 Ma at the southern end of Mount Sidley. The final phase of activity was the eruption of basanite cones at approximately 4.2 Ma. The southward migration of volcanic activity was accompanied by distinct changes in magma composition and is best explained by the sequential release of magmas stored within an intricate system of conduits and chambers in the crust by tectonically driven (magma assisted?) fracture propagation. The style of volcanic migration at Mount Sidley is emulated on a larger scale by other volcanoes in the Executive Committee Range, in which progressive southward displacement of volcanic activity corresponds with significant petrological variations between major centers.  相似文献   
30.
Mt. Erebus, a 3,794-meter-high active polygenetic stratovolcano, is composed of voluminous anorthoclase-phyric tephriphonolite and phonolite lavas overlying unknown volumes of poorly exposed, less differentiated lavas. The older basanite to phonotephrite lavas crop out on Fang Ridge, an eroded remnant of a proto-Erebus volcano and at other isolated locations on the flanks of the Mt. Erebus edifice. Anorthoclase feldspars in the phonolitic lavas are large (~10 cm), abundant (~30–40%) and contain numerous melt inclusions. Although excess argon is known to exist within the melt inclusions, rigorous sample preparation was used to remove the majority of the contaminant. Twenty-five sample sites were dated by the 40Ar/39Ar method (using 20 anorthoclase, 5 plagioclase and 9 groundmass concentrates) to examine the eruptive history of the volcano. Cape Barne, the oldest site, is 1,311±16 ka and represents the first of three stages of eruptive activity on the Mt. Erebus edifice. It shows a transition from sub-aqueous to sub-aerial volcanism that may mark the initiation of proto-Erebus eruptive activity. It is inferred that a further ~300 ky of basanitic/phonotephritic volcanism built a low, broad platform shield volcano. Cessation of the shield-building phase is marked by eruptions at Fang Ridge at ~1,000 ka. The termination of proto-Erebus eruptive activity is marked by the stratigraphically highest flow at Fang Ridge (758±20 ka). Younger lavas (~550–250 ka) on a modern-Erebus edifice are characterized by phonotephrites, tephriphonolites and trachytes. Plagioclase-phyric phonotephrite from coastal and flank flows yield ages between 531±38 and 368±18 ka. The initiation of anorthoclase tephriphonolite occurred in the southwest sector of the volcano at and around Turks Head (243±10 ka). A short pulse of effusive activity marked by crustal contamination occurred ~160 ka as indicated by at least two trachytic flows (157±6 and 166±10 ka). Most anorthoclase-phyric lavas, characteristic of Mt. Erebus, are less than 250 ka. All Mt. Erebus flows between about 250 and 90 ka are anorthoclase tephriphonolite in composition.Editorial responsibility: J. Donelly-Nolan  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号