首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   337篇
  免费   13篇
  国内免费   1篇
测绘学   4篇
大气科学   11篇
地球物理   111篇
地质学   140篇
海洋学   37篇
天文学   30篇
综合类   1篇
自然地理   17篇
  2023年   1篇
  2022年   1篇
  2021年   3篇
  2020年   7篇
  2019年   5篇
  2018年   17篇
  2017年   20篇
  2016年   17篇
  2015年   23篇
  2014年   20篇
  2013年   19篇
  2012年   22篇
  2011年   22篇
  2010年   26篇
  2009年   18篇
  2008年   31篇
  2007年   20篇
  2006年   4篇
  2005年   15篇
  2004年   7篇
  2003年   10篇
  2002年   7篇
  2001年   4篇
  2000年   10篇
  1998年   2篇
  1997年   2篇
  1996年   3篇
  1995年   2篇
  1994年   1篇
  1993年   2篇
  1992年   2篇
  1991年   2篇
  1988年   2篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1983年   1篇
排序方式: 共有351条查询结果,搜索用时 15 毫秒
91.
This paper presents new petro-chemical data on some typical mortars found in many buildings in the historic city centre of Catania (Eastern Sicily). Extensively used in the architecture of the city from the second half of the nineteenth century until the mid-twentieth century, these mortars are characterised by a particular aggregate locally known as “agghiara” or “ghiara”. This is the product of thermal transformation induced by the heating undergone by palaeo-soils, originally rich in organic matter, covered by lava flows, which change their colour to reddish nuances. The volcanic origin of ghiara is a peculiar feature of the Etnean area. Mixed with lime, it gives to mortars an intense reddish colour, as well as hydraulic properties, which are comparable with those of the historically used pozzolana. This work aimed at complete characterisation of these ghiara mortars, for providing information on several important technological aspects. In order to get information on used raw materials, sampling of some ancient underground quarries, located both in the historic city centre and at the periphery, was also performed. Results led to the complete characterisation of the selected ghiara mortars and yielded information on some technological features and the composition of both newly formed and secondary phases, these latter due to alteration processes. The hydraulic properties of mortars have been related to the occurrence of amorphous phases within the ghiara aggregate, which were identified by means of SEM morphological observations. These phases, formed during the “firing” process of palaeo-soils, react with lime producing hydraulic compounds (C–S–H and C–A–H), which are responsible for the mortars durability.  相似文献   
92.
Abstract. In 1997, Artegiani et al. depicted for the first time the seasonal climatology of the Adriatic Sea; they used the ATOS data set, formed by 5540 oceanographic stations sampled over this continental basin from 1911 to 1980. Lately, two Italian institutes working on the Adriatic Sea for long time, IBM and IRPEM, merged their recent data sets for the northernmost part of the basin. This yielded 3600 new oceanographic stations, concentrated in an area where 809 ATOS stations were located. The new data were quality checked, and then a seasonal climatology was drawn up as a first analysis step. The new climatology differed significantly from the ATOS results; this could be explained, at least partially, by the climatic changes that have occurred on this area. For example, air temperature increased significantly over northern Italy starting from 1988. Variations of the observed air temperature and Po River runoff qualitatively agree with sea surface temperature and salinity variations. A preliminary computation of heat fluxes based on ECMWF reanalysis confirms an increased heat flux to the Northern Adriatic Sea starting from 1988.  相似文献   
93.
The inner shelf waters off Southeastern Brazil are periodically enriched by bottom intrusions of the cold and nutrient‐rich South Atlantic Central Water (SACW), which is transported offshore by the Brazil Current. This study examined the temporal contrasts in abundance and structure of pelagic copepod assemblages in a neritic station off Ubatuba, in relation to hydrography and phytoplankton biomass, to investigate the effects of SACW bottom intrusions on copepod population dynamics during three consecutive years. The water‐column characteristics shifted from a well‐mixed, more turbid and phytoplankton‐poor scenario during subsidence conditions to a stratified, less turbid and high Chl‐a concentration scenario during SACW bottom intrusions, leading to increased copepod diversity, abundance, and biomass. The rise in copepod diversity during SACW intrusions was related to the contribution of oceanic species in addition to coastal water species. The copepod community was numerically dominated by small‐sized species, such as Oncaea waldemari, Oithona plumifera, and clausocalanid and paracalanid copepodids, regardless of seasonality and SACW intrusions. Some large calanoid species contributed considerably to the total copepod biomass during intrusions. In addition to confirming that SACW seasonal intrusions play a key role in pelagic processes off Southeast Brazil, this study showed that the multiannual variability of SACW seasonal intrusions is important in regulating the structure and dynamics of copepod communities in this subtropical area.  相似文献   
94.
Roman mortars were collected from the Villa dei Quintili in Rome, an archaeological site consisting of numerous edifices from nine construction phases dating from the 2nd century A.D. to modern times. A multianalytical approach was used on 34 mortar samples to infer the evolution of production techniques over time and to identify the source area of calcareous raw materials used in the preparation of the lime. Optical microscopy, scanning electron microscopy coupled with an energy‐dispersive system, and laser ablation inductively coupled plasma mass spectrometry were used to study the samples. The major and trace element data were compared with the compositions of two types of limestone samples (Calcare Massiccio and Calcare Maiolica) collected from the Cornicolani Mountains. The results suggest that the technological practices and the calcareous raw materials used for lime production remained unchanged over the time period considered (2nd century A.D. to 3rd century A.D.). The compositions of lime‐related particles in the mortars match those of Calcare Maiolica, which suggests its use as raw material for lime production. On the whole, the results are in agreement with data from existing literature regarding both the use by Roman builders of specific raw materials for the mortars’ production and the relative supply area.  相似文献   
95.
The deep thermal field in sedimentary basins can be affected by convection, conduction or both resulting from the structural inventory, physical properties of geological layers and physical processes taking place therein. For geothermal energy extraction, the controlling factors of the deep thermal field need to be understood to delineate favorable drill sites and exploitation compartments. We use geologically based 3-D finite element simulations to figure out the geologic controls on the thermal field of the geothermal research site Groß Schönebeck located in the E part of the North German Basin. Its target reservoir consists of Permian Rotliegend clastics that compose the lower part of a succession of Late Carboniferous to Cenozoic sediments, subdivided into several aquifers and aquicludes. The sedimentary succession includes a layer of mobilized Upper Permian Zechstein salt which plays a special role for the thermal field due to its high thermal conductivity. Furthermore, the salt is impermeable and due to its rheology decouples the fault systems in the suprasalt units from subsalt layers. Conductive and coupled fluid and heat transport simulations are carried out to assess the relative impact of different heat transfer mechanisms on the temperature distribution. The measured temperatures in 7 wells are used for model validation and show a better fit with models considering fluid and heat transport than with a purely conductive model. Our results suggest that advective and convective heat transport are important heat transfer processes in the suprasalt sediments. In contrast, thermal conduction mainly controls the subsalt layers. With a third simulation, we investigate the influence of a major permeable and of three impermeable faults dissecting the subsalt target reservoir and compare the results to the coupled model where no faults are integrated. The permeable fault may have a local, strong impact on the thermal, pressure and velocity fields whereas the impermeable faults only cause deviations of the pressure field.  相似文献   
96.
In this report, we analyze the angiosperm fossil record (micro- and megafossil) from the central and southern basins of Argentina, southern South America, deposited between the late Barremian (128.3 Ma) to the end of the Coniacian (85.8 Ma). Based on this analysis, three major stages in the evolution of the angiosperms in the southernmost region of South America are established as follows: the late Barremian–Aptian, the latest Aptian-earliest Albian, and the middle Albian- Coniacian. The comparison between our fossil data set and those from Australia, North America, Asia and Europe suggest that the evolution and diversification of the angiosperms at mid and high latitudes in both hemispheres occurred roughly synchronously.  相似文献   
97.
98.
We analyse the effect of fluid flow on the recent thermal field for the Brandenburg region (North German Basin) which is strongly affected by salt structures. The basin fill is modified by a thick layer of mobilized salt (Zechstein, Upper Permian) that decouples the overburden from deeper parts of the lithosphere and is responsible for thermal anomalies since salt has a distinctly higher thermal conductivity than the surrounding sediments and is impermeable to fluid flow. Numerical simulations of coupled fluid flow and heat transfer are carried out to investigate the influence of fluid flow on the shallow temperature field above the Zechstein salt, based on the finite element method. A comparison of results from conductive and coupled modelling reveals that the temperature field down to the low-permeable Triassic Muschelkalk is influenced by fluids, where the shallow low-permeable Tertiary Rupelian-clay is absent. Overall cooling is induced by forced convective forces, the depth range of which is controlled by the communication pathways between the different aquifers. Moreover, buoyancy-induced effects are found in response to temperature-dependent differences in the fluid density where forced convective forces are weak. The range of influence is controlled by the thickness and the permeability of the permeable strata above the Triassic Muschelkalk. With increasing depth, thermal conduction mainly controls the short-wavelength pattern of the temperature distribution, whereas the long-wavelength pattern results from interaction between the highly conductive crust and low-conductive sediments. Our results provide generic implications for basins affected by salt tectonics.  相似文献   
99.
The solubility of chromium in chlorite as a function of pressure, temperature, and bulk composition was investigated in the system Cr2O3–MgO–Al2O3–SiO2–H2O, and its effect on phase relations evaluated. Three different compositions with X Cr = Cr/(Cr + Al) = 0.075, 0.25, and 0.5 respectively, were investigated at 1.5–6.5 GPa, 650–900 °C. Cr-chlorite only occurs in the bulk composition with X Cr = 0.075; otherwise, spinel and garnet are the major aluminous phases. In the experiments, Cr-chlorite coexists with enstatite up to 3.5 GPa, 800–850 °C, and with forsterite, pyrope, and spinel at higher pressure. At P > 5 GPa other hydrates occur: a Cr-bearing phase-HAPY (Mg2.2Al1.5Cr0.1Si1.1O6(OH)2) is stable in assemblage with pyrope, forsterite, and spinel; Mg-sursassite coexists at 6.0 GPa, 650 °C with forsterite and spinel and a new Cr-bearing phase, named 11.5 Å phase (Mg:Al:Si = 6.3:1.2:2.4) after the first diffraction peak observed in high-resolution X-ray diffraction pattern. Cr affects the stability of chlorite by shifting its breakdown reactions toward higher temperature, but Cr solubility at high pressure is reduced compared with the solubility observed in low-pressure occurrences in hydrothermal environments. Chromium partitions generally according to \(X_{\text{Cr}}^{\text{spinel}}\) ? \(X_{\text{Cr}}^{\text{opx}}\) > \(X_{\text{Cr}}^{\text{chlorite}}\) ≥ \(X_{\text{Cr}}^{\text{HAPY}}\) > \(X_{\text{Cr}}^{\text{garnet}}\). At 5 GPa, 750 °C (bulk with X Cr = 0.075) equilibrium values are \(X_{\text{Cr}}^{\text{spinel}}\) = 0.27, \(X_{\text{Cr}}^{\text{chlorite}}\) = 0.08, \(X_{\text{Cr}}^{\text{garnet}}\) = 0.05; at 5.4 GPa, 720 °C \(X_{\text{Cr}}^{\text{spinel}}\) = 0.33, \(X_{\text{Cr}}^{\text{HAPY}}\) = 0.06, and \(X_{\text{Cr}}^{\text{garnet}}\) = 0.04; and at 3.5 GPa, 850 °C \(X_{\text{Cr}}^{\text{opx}}\) = 0.12 and \(X_{\text{Cr}}^{\text{chlorite}}\) = 0.07. Results on Cr–Al partitioning between spinel and garnet suggest that at low temperature the spinel- to garnet-peridotite transition has a negative slope of 0.5 GPa/100 °C. The formation of phase-HAPY, in assemblage with garnet and spinel, at pressures above chlorite breakdown, provides a viable mechanism to promote H2O transport in metasomatized ultramafic mélanges of subduction channels.  相似文献   
100.
Inversion methods that rely on measurements of the hydraulic head h cannot capture the fine-scale variability of the hydraulic properties of an aquifer. This is particularly true for direct inversion methods, which have the further limitation of providing only deterministic results. On the other hand, stochastic simulation methods can reproduce the fine-scale heterogeneity but cannot directly incorporate information about the hydraulic gradient. In this work, a hybrid approach is proposed to join a direct inversion method (the comparison model method, CMM) and multiple-point statistics (MPS), for determination of a hydraulic transmissivity field T from a map of a reference hydraulic head \(h^\mathrm {(ref)}\) and a prior model of the heterogeneity (a training image). The hybrid approach was tested and compared with pure MPS and pure CMM approaches in a synthetic case study. Also, sensitivity analysis was performed to test the importance of the acceptance threshold \(\delta \), a simulation parameter that allows one to tune the influence of \(h^\mathrm {(ref)}\) on the final results. The transmissivity fields T obtained using the hybrid approach take into account information coming from the hydraulic gradient while simultaneously reproducing some of the fine-scale features provided by the training image. Furthermore, many realizations of T can be obtained thanks to the stochasticity of MPS. Nevertheless, it is not straightforward to exploit the correlation between the T maps provided by the CMM and the prior model introduced by the training image, because the former depends on the boundary conditions and flow settings. Another drawback is the growing number of simulation parameters introduced when combining two diverse methods. At the same time, this growing complexity opens new possibilities that deserve further investigation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号