首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   138篇
  免费   10篇
  国内免费   1篇
测绘学   2篇
大气科学   20篇
地球物理   44篇
地质学   42篇
海洋学   11篇
天文学   26篇
自然地理   4篇
  2022年   2篇
  2021年   4篇
  2020年   3篇
  2019年   8篇
  2018年   3篇
  2017年   4篇
  2016年   12篇
  2015年   7篇
  2014年   14篇
  2013年   11篇
  2012年   11篇
  2011年   10篇
  2010年   11篇
  2009年   8篇
  2008年   8篇
  2007年   6篇
  2006年   5篇
  2005年   6篇
  2004年   7篇
  2003年   6篇
  2002年   1篇
  2001年   1篇
  1997年   1篇
排序方式: 共有149条查询结果,搜索用时 363 毫秒
131.
In a context of increased demand for food and of climate change, the water consumptions associated with the agricultural practice of irrigation focuses attention. In order to analyze the global influence of irrigation on the water cycle, the land surface model ORCHIDEE is coupled to the GCM LMDZ to simulate the impact of irrigation on climate. A 30-year simulation which takes into account irrigation is compared with a simulation which does not. Differences are usually not significant on average over all land surfaces but hydrological variables are significantly affected by irrigation over some of the main irrigated river basins. Significant impacts over the Mississippi river basin are shown to be contrasted between eastern and western regions. An increase in summer precipitation is simulated over the arid western region in association with enhanced evapotranspiration whereas a decrease in precipitation occurs over the wet eastern part of the basin. Over the Indian peninsula where irrigation is high during winter and spring, a delay of 6?days is found for the mean monsoon onset date when irrigation is activated, leading to a significant decrease in precipitation during May to July. Moreover, the higher decrease occurs in June when the water requirements by crops are maximum, exacerbating water scarcity in this region. A significant cooling of the land surfaces occurs during the period of high irrigation leading to a decrease of the land-sea heat contrast in June, which delays the monsoon onset.  相似文献   
132.
Abstract– Micrometeoroids with 100 and 200 μm size dominate the zodiacal cloud dust. Such samples can be studied as micrometeorites, after their passage through the Earth atmosphere, or as microxenoliths, i.e., submillimetric meteorite inclusions. Microxenoliths are samples of the zodiacal cloud dust present in the asteroid Main Belt hundreds of millions years ago. Carbonaceous microxenoliths represent the majority of observed microxenoliths. They have been studied in detail in howardites and H chondrites. We investigate the role of carbonaceous asteroids and Jupiter‐family comets as carbonaceous microxenolith parent bodies. The probability of low velocity collisions of asteroidal and cometary micrometeoroids with selected asteroids is computed, starting from the micrometeoroid steady‐state orbital distributions obtained by dynamical simulations. We selected possible parent bodies of howardites (Vesta) and H chondrites (Hebe, Flora, Eunomia, Koronis, Maria) as target asteroids. Estimates of the asteroidal and cometary micrometeoroid mass between 2 and 4 AU from the Sun are used to compute the micrometeoroid mass influx on each target. The results show that all the target asteroids (except Koronis) receive the same amount (within the uncertainties) of asteroidal and cometary micrometeoroids. Therefore, both these populations should be observed among howardite and H chondrite carbonaceous microxenoliths. However, this is not the case: carbonaceous microxenoliths show differences similar to those existing among different groups of carbonaceous chondrites (e.g., CI, CM, CR) but two sharply distinct populations are not observed. Our results and the observations can be reconciled assuming the existence of a continuum of mineralogical and chemical properties between carbonaceous asteroids and comets.  相似文献   
133.
The sensitivity of the tropical climate to tidal mixing in the Indonesian Archipelago (IA) is investigated using a coupled general circulation model. It is shown that the introduction of tidal mixing considerably improves water masses properties in the IA, generating fresh and cold anomalies in the thermocline and salty and cold anomalies at the surface. The subsurface fresh anomalies are advected in the Indian Ocean thermocline and ultimately surface to freshen the western part of the basin whereas surface salty anomalies are advected in the Leuwin current to salt waters along the Australian coast. The ~0.5°C surface cooling in the IA reduces by 20% the overlying deep convection. This improves both the amount and structure of the rainfall and weakens the wind convergence over the IA, relaxes the equatorial Pacific trade winds and strengthens the winds along Java coast. These wind changes causes the thermocline to be deeper in the eastern equatorial Pacific and shallower in the eastern Indian Ocean. The El Nino Southern Oscillation (ENSO) amplitude is therefore slightly reduced while the Indian Ocean Dipole/Zonal Mode (IODZM) variability increases. IODZM precursors, related to ENSO events the preceding winter in this model, are also shown to be more efficient in promoting an IODZM thanks to an enhanced wind/thermocline coupling. Changes in the coupled system in response tidal mixing are as large as those found when closing the Indonesian Throughflow, emphasizing the key role of IA on the Indo-Pacific climate.  相似文献   
134.
135.
Seventy-one carbonaceous chondritic microclasts of average size 150 μm have been found in three howardites (Yamato-793497, Jodzie, Kapoeta). All carbonaceous chondritic microclasts are made of a fine-grained phyllosilicate-rich matrix supporting a variety of minerals such as olivine, pyroxene, spinel, iron oxides, iron-nickel sulfides, and calcium carbonates. Such a mineralogy is typical of chondritic C2 matter. Half of the carbonaceous chondritic microclasts are tochilinite-rich, and have been tentatively called CM2 microclasts. The other half are magnetite-rich, and have been tentatively called CR2 microclasts. The absence of a correlation between the CM2/CR2 ratio in carbonaceous chondritic microclasts and in numerous millimeter-sized clasts found in the same sections argues for carbonaceous chondritic microclasts being true micrometeorites rather than fragments of larger objects. Dynamical simulations show that it is possible for asteroidal dust to encounter Vesta (the howardite’s putative parent-asteroid) at velocity low enough (<1 km.s−1) to prevent fragmentation. Because the micrometeorite flux in the inner Solar System has been decreasing with time, we argue that carbonaceous chondritic microclasts have been trapped in Vesta’s regolith early in the history of the Solar System and are fossil micrometeorites. Because both microclasts and clasts found in howardites are related to C2 chondritic matter, we propose that C2 matter represents the bulk, or at least a significant fraction of the primordial howardite parent-asteroid. Considering the abundance of C2 matter among fossil micrometeorites, we speculate that the C2 fossil micrometorites are the so far unidentified agent of the late chondritic veneer that endowed the Earth’s mantle with an excess of siderophile elements relative to the contents predicted by the core-mantle separation models. The discovery that C2 fossil micrometeorites are similar to C2 modern Antarctic micrometeorites supports recent models proposing a micrometeoritic origin for the Earth’s oceans and volatile species.  相似文献   
136.
137.
The temporal variability of water-level fluctuations in the chalk aquifer of Upper Normandy, France is constrained by natural climate fluctuations and is closely linked to the regional geological patterns. The chalk plateaus are covered with 5–50 m thick semi-permeable surficial formations; the thickness of the underlying chalk aquifer varies from 50 to 300 m. The relationship among climate oscillations, piezometric levels, and geologic structure were investigated by correlation, Fourier spectral, and continuous wavelet analyses of selected piezometric time-series data. Analysis focused on two piezometers located on the uplifted side of a major fault and two piezometers on the downthrown side. After generalization to other piezometers in the region, it was deduced that, in the downthrown compartments, a substantial aquifer and surficial formations thickness would imply a strong attenuation of annual variability, while multi-year variability is clearly expressed. Conversely, in the uplifted compartments, a thin layer of surficial formations and small thickness of the chalk authorizes strong variations on the annual mode with respect to the contribution of long-term climatic oscillations (multi-year variability). The results then demonstrated—and proposed a spatial determination of—the differential influence of geological patterns on the filtering of climate-induced oscillations in piezometric variability.  相似文献   
138.
Cool‐water carbonate sedimentation has dominated Mediterranean shelves since the Early Pliocene. Skeletal sand and gravel herein consist of remains of heterozoan organisms, which are susceptible to reworking due to weak early cementation in non‐tropical waters. This study documents the Lower Pleistocene carbonate wedge of Favignana Island (Italy), which prograded from a 5   km wide passage between two palaeo‐islands into a perpendicular, 10 to 15   km wide strait between the palaeo‐islands at one side and Sicily at the other during the Emilian highstand (1·6   Ma to 1·1   Ma). The clinoformed carbonate wedge, which is 50   m thick and 6   km long, formed by east/south‐east progradation of a platform on the submarine sill by currents that were funnelled between the two palaeo‐islands. Platform‐slope clinoforms evolved from initial aggradation (thin and low‐angle) into a progradation phase (thick and high‐angle). Both clinoform types are characterized by a bimodal facies stacking pattern defined by sedimentary structures created by: (i) subaqueous dunes associated with dilute subcritical currents; and (ii) upper‐flow‐regime bedforms associated with sediment‐laden supercritical turbidity currents. Focusing of episodic currents on the platform by funnelling between the islands controlled the downstream formation of a sediment body, here named carbonate delta. The carbonate delta interfingers with subaqueous dune deposits formed in the perpendicular strait. This study uses a reconstruction of bedform dynamics to unravel the evolution of this gateway‐related carbonate accumulation.  相似文献   
139.
On 8–9 September 2002, an extreme rainfall event caused by a stationary mesoscale convective system (MCS) occurred in the Gard region, France. Distributed hydrologic and hydraulic modelling has been carried out to assess and compare the various sources of data collected operationally and during the post-event field surveys. Distributed hydrological modelling was performed with n-TOPMODELs and assessed for ungauged basins with the discharge estimates of the post-event surveys. A careful examination of the occurrence in time and space of the flash floods over the head watersheds indicates that flooding was controlled by the trajectory of the convective part of the MCS. Stationarity of the MCS over the Gardon watershed (1858 km2 at Remoulins) for 28 h was responsible for the exceptional magnitude of the flood at this scale. The flood dynamics were characterized by an extensive inundation of the Gardonnenque plain upstream of the Gardon Gorges resulting in a significant peak flow reduction downstream. One-dimensional unsteady-flow hydraulic modelling was found to be required to reproduce these dynamics. Hydraulic modelling also proved to be potentially useful for the critical analysis and extrapolation of operational discharge rating curves.  相似文献   
140.
We investigate the petrofabric of crustal rocks from Mars and Vesta through the measurement of the anisotropy of the magnetic susceptibility (AMS) of achondrites. Previous data are integrated with new measurements to obtain a dataset that provide macroscopic information about the magnetic fabric of 41 meteorites of the howardite–eucrite–diogenite clan (HED, falls only) and 16 Martian meteorites. The interpretation takes into account the large contribution of paramagnetism to the magnetic susceptibility of these meteorites. We use a model that allows the computation of the anisotropy degree of the population of ferromagnetic grains and provides a quantitative proxy for the degree of shape preferential orientation of these grains in HED and Martian meteorites. The results also provide quantitative information about the shape of the magnetic fabric (prolate, oblate).In HED achondrites, the ductile FeNi grains are sensitive strain recorders and our magnetic fabric data provide the first quantitative insights to the strain history of the crustal rocks of Vesta. Most HED achondrites are breccias but display a strong and spatially coherent magnetic anisotropy, indicating that intense deformation of FeNi grains took place after brecciation. The average fabric of eucrites, howardites is oblate (i.e. the texture is foliated) whereas the fabric of diogenites is more neutral. The howardite results suggest the existence of an isotropic fraction of ferromagnetic minerals that can be ascribed to the presence of carbonaceous chondrite clasts that have preserved their original magnetic fabric. In this hypothesis, howardites have an intensity of petrofabric very similar to eucrites and diogenites. Thermal metamorphism (itself possibly impact-related) plus lithostatic compaction occurring after brecciation appears as the best candidate to explain the observed petrofabric in eucrites and diogenites, whereas compaction by hypervelocity impacts may be reponsible for the fabric of howardites.Martian meteorites may still possess their primary magmatic fabric. Among Martian meteorites, basaltic shergottites and nakhlites display an oblate fabric (foliated texture) with only limited variations among each group. Olivine–phyric shergottites have a neutral fabric that points to a different petrogenesis. Nakhlites have weaker fabric intensity than shergottites. The fabric intensity is comparable to what is classically observed in terrestrial volcanic and plutonic rocks.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号