首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   195篇
  免费   15篇
  国内免费   1篇
测绘学   3篇
大气科学   9篇
地球物理   44篇
地质学   75篇
海洋学   8篇
天文学   63篇
综合类   2篇
自然地理   7篇
  2023年   3篇
  2022年   3篇
  2021年   6篇
  2020年   6篇
  2019年   8篇
  2018年   12篇
  2017年   17篇
  2016年   12篇
  2015年   11篇
  2014年   12篇
  2013年   4篇
  2012年   21篇
  2011年   17篇
  2010年   12篇
  2009年   9篇
  2008年   11篇
  2007年   10篇
  2006年   6篇
  2005年   7篇
  2004年   7篇
  2003年   5篇
  2002年   1篇
  2000年   4篇
  1999年   2篇
  1998年   1篇
  1997年   1篇
  1994年   2篇
  1993年   1篇
排序方式: 共有211条查询结果,搜索用时 0 毫秒
41.
The peak floor acceleration (PFA) is a critical parameter influencing the performance of non‐structural elements in buildings. This paper develops a response spectrum analysis method based on the complete quadratic combination (CQC) rule to estimate the PFA. The method accounts for the rigid contribution of truncated higher modes and the cross‐correlations between all pairs of modes. The approximation is introduced in the time domain and then formulated in the frequency domain by CQC. Application of the method to a continuous cantilever beam idealizing a building with shear walls is presented and compared with alternative formulations. The proposed method is able to provide a consistent estimation of the PFA along the entire structure, not only where the PFA is principally influenced by the first few flexible modes but also where the PFA is mainly related to the rigid response of the structure, for example, near its base. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
42.
This work addresses the temporal dynamics of riparian vegetation in large braided rivers, exploring the relationship between vegetation erosion and flood magnitude. In particular, it investigates the existence of a threshold discharge, or a range of discharges, above which erosion of vegetated patches within the channel occurs. The research was conducted on a 14 km long reach of the Tagliamento River, a braided river in north‐eastern Italy. Ten sets of aerial photographs were used to investigate vegetation dynamics in the period 1954–2011. By using different geographic information system (GIS) procedures, three aspects of geomorphic‐vegetation dynamics and interactions were addressed: (i) long‐term (1954–2011) channel evolution and vegetation dynamics; (ii) the relationship between vegetation erosion/establishment and flow regime; (iii) vegetation turnover, in the period 1986–2011. Results show that vegetation turnover is remarkably rapid in the study reach with 50% of in‐channel vegetation persisting for less than 5–6 years and only 10% of vegetation persisting for more than 18–19 years. The analysis shows that significant vegetation erosion is determined by relatively frequent floods, i.e. floods with a recurrence interval of c. 1–2.5 years, although some differences exist between sub‐reaches with different densities of vegetation cover. These findings suggest that the erosion of riparian vegetation in braided rivers may not be controlled solely by very large floods, as is the case for lower energy gravel‐bed rivers. Besides flow regime, other factors seem to play a significant role for in‐channel vegetation cover over long time spans. In particular, erosion of marginal vegetation, which supplies large wood elements to the channel, increased notably over the study period and was an important factor for in‐channel vegetation trends. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
43.
Digital elevation models (DEMs) at different resolutions (180, 360, and 720 m) are used to examine the impact of different levels of landscape representation on the hydrological response of a 690‐km2 catchment in southern Quebec. Frequency distributions of local slope, plan curvature, and drainage area are calculated for each grid size resolution. This landscape analysis reveals that DEM grid size significantly affects computed topographic attributes, which in turn explains some of the differences in the hydrological simulations. The simulations that are then carried out, using a coupled, process‐based model of surface and subsurface flow, examine the effects of grid size on both the integrated response of the catchment (discharge at the main outlet and at two internal points) and the distributed response (water table depth, surface saturation, and soil water storage). The results indicate that discharge volumes increase as the DEM is coarsened, and that coarser DEMs are also wetter overall in terms of water table depth and soil water storage. The reasons for these trends include an increase in the total drainage area of the catchment for larger DEM cell sizes, due to aggregation effects at the boundary cells of the catchment, and to a decrease in local slope and plan curvature variations, which in turn limits the capacity of the watershed to transmit water downslope and laterally. The results obtained also show that grid resolution effects are less pronounced during dry periods when soil moisture dynamics are mostly controlled by vertical fluxes of evaporation and percolation. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
44.
Relative sea-level (RSL) evolution during Marine Isotopic Stage (MIS) 5 in the Mediterranean basin is still not fully understood despite a plethora of morphological, stratigraphic and geochronological studies carried out on highstand deposits of this area. In this review we assembled a database of 323 U/Th-dated samples (e.g. corals, molluscs, speleothems) which were used to chronologically constrain RSL evolution within MIS 5. The application of strict geochemical criteria to the U/Th samples indicates that only ~33% of data available for the Mediterranean Sea can be considered ‘reliable’. Most of these data (~65%) refer to the MIS 5e highstand, while only ~17% could be related to the MIS 5a. No attribution to MIS 5c can be unequivocally supported. Nevertheless, the resulting framework does not allow us to define a satisfactory RSL trend during the MIS 5e highstand and subsequent MIS 5 substages. Overall, the proposed selection of reliable/unreliable data would be useful for detecting areas where MIS 5 substage attributions are not supported by confident U/Th chronological data and thus the related reconstructions need to be revised. In this regard, the resulting framework calls for a reappraisal and re-examination of the Mediterranean records with advanced geochronological methodologies.  相似文献   
45.
The upper portion of the meadows of the protected Mediterranean seagrass Posidonia oceanica occurs in the region of the seafloor mostly affected by surf-related effects. Evaluation of its status is part of monitoring programs, but proper conclusions are difficult to draw due to the lack of definite reference conditions. Comparing the position of the meadow upper limit with the beach morphodynamics (i.e. the distinctive type of beach produced by topography and wave climate) provided evidence that the natural landwards extension of meadows can be predicted. An innovative model was therefore developed in order to locate the region of the seafloor where the meadow upper limit should lie in natural conditions (i.e. those governed only by hydrodynamics, in absence of significant anthropogenic impact). This predictive model was validated in additional sites, which showed perfect agreement between predictions and observations. This makes the model a valuable tool for coastal management.  相似文献   
46.
47.
48.
On October 30, 2016, a seismic event and its aftershocks produced diffuse landslides along the SP 209 road in the Nera River Gorge (Central Italy). Due to the steep slopes and the outcropping of highly fractured and bedded limestone, several rockfalls were triggered, of which the main event occurred on the slope of Mount Sasso Pizzuto. The seismic shock acted on a rock wedge that, after an initial slide, developed into a rockfall. The debris accumulation blocked the SP 209 road and dammed the Nera River, forming a small lake. The river discharge was around 3.6 m3/s; the water overtopped the dam and flooded the road. By a preliminary topographic survey, we estimated that the debris accumulation covers an area of about 16,500 m2, while the volume is around 70,000 m3. The maximum volume occupied by the pre-existing talus mobilized by the rockfall is about 20% of the total volume. Besides blocking the road, the rockfall damaged a bridge severely, while, downstream of the dam, the water flow caused erosion of a road embankment. A rockfall protection gallery, a few hundred meters downstream of the dam, was damaged during the event. Other elastic nets and rigid barriers were not sufficient to protect the road from single-block rockfalls, with volumes around 1–2 m3. Considering the geological and geomorphological conditions, as well as the high seismicity and the socioeconomic importance of the area, a review of the entire rockfall protection systems is required to ensure protection of critical infrastructure and local communities.  相似文献   
49.
The Argentera Massif (French–Italian Alps), with its uniform lithology, was selected to evaluate how known Plio–Pleistocene tectonics have conditioned the drainage network geometry. The drainage network was automatically derived and ordered from a 10 m-resolution DEM. On hillshade images, alignments of morphological features were identified. The Massif was subdivided into 22 domains of 50 km2 within which the directions of every river channel segment and the direction of the aligned morphological features were compared and contrasted with the strike of tectonic structures measured in the field. Results suggest that the Argentera drainage system is variously controlled by recent tectonics, depending on the Massif sector taken into account. In the NW sector, the vertical uplift is less because the strain has been accommodated in an oblique direction along a lateral thrust. In the SE sector, strain in a predominantly vertical direction along a frontal thrust has resulted in a major vertical displacement. Accordingly, the NW sector is characterized by (i) a strong geometric relationship between the main tectonic structures and the directions of river channels, (ii) longitudinal main rivers bordering the Massif, and (iii) a general trellis pattern within the domains.In the SE sector, the prolonged uplift has forced an original longitudinal drainage system to develop as a transverse system. This change has occurred by means of fluvial captures that have been identified by the presence of windgaps, fluvial elbows and knickpoints. At the domain scale, intense uplift of the SE sector has prompted the drainage pattern to evolve as a dendritic type with no clear influence of structure in the channel orientations.  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号