首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   182篇
  免费   4篇
  国内免费   5篇
测绘学   5篇
大气科学   13篇
地球物理   48篇
地质学   47篇
海洋学   37篇
天文学   26篇
综合类   2篇
自然地理   13篇
  2023年   1篇
  2020年   2篇
  2019年   3篇
  2018年   1篇
  2017年   2篇
  2016年   1篇
  2015年   1篇
  2014年   6篇
  2013年   8篇
  2012年   8篇
  2011年   11篇
  2010年   7篇
  2009年   14篇
  2008年   6篇
  2007年   8篇
  2006年   9篇
  2005年   6篇
  2004年   10篇
  2003年   3篇
  2002年   3篇
  2001年   6篇
  2000年   7篇
  1999年   5篇
  1998年   5篇
  1997年   6篇
  1996年   3篇
  1995年   1篇
  1993年   3篇
  1991年   1篇
  1990年   1篇
  1988年   2篇
  1987年   2篇
  1986年   3篇
  1985年   8篇
  1984年   2篇
  1983年   2篇
  1982年   3篇
  1981年   2篇
  1980年   2篇
  1979年   3篇
  1978年   1篇
  1977年   2篇
  1976年   1篇
  1975年   1篇
  1974年   2篇
  1973年   1篇
  1972年   2篇
  1971年   2篇
  1970年   2篇
排序方式: 共有191条查询结果,搜索用时 31 毫秒
101.
—A succession of precursory changes of seismicity characteristic to earthquakes of magnitude 7.0–7.5 occurred in advance of the Kobe 1995, M = 7.2, earthquake. Using the Japan Meteorological Agency (JMA) regional catalog of earthquakes, the M8 prediction algorithm (Keilies-Borko and Kossobokov, 1987) recognizes the time of increased probability, TIP, for an earthquake with magnitude 7.0–7.5 from July 1991 through June 1996. The prediction is limited to a circle of 280-km radius centered at 33.5°N, 133.75°E. The broad area of intermediate-term precursory rise of activity encompasses a 175 by 175-km square, where the sequence of earthquakes exhibited a specific intermittent behavior. The square is outlined as the second-approximation reduced area of alarm by the "Mendocino Scenario" algorithm, MSc (Kossobokov et al., 1990). Moreover, since the M8 alarm starts, there were no swarms recorded except the one on 9–26 Nov. 1994, located at 34.9°N, 135.4°E. Time, location, and magnitude of the 1995 Kobe earthquake fulfill the M8-MSc predictions. Its aftershock zone ruptured the 54-km segment of the fault zone marked by the swarm, directly in the corner of the reduced alarm area. The Kobe 1995 epicenter is less than 50 km from the swarm and it coincides with the epicenter of the M 3.5 foreshock which took place 11 hours in advance.  相似文献   
102.
Summary. Using natural volcanic rocks which acquired thermoremanence (TRM) in known fields, reliability of various palaeointensity methods using alternating field (AF) demagnetization were evaluated. Natural remanence (NRM), TRM and anhysteretic remanences (ARM's) before and after heating were stepwisely AF demagnetized following Shaw's method.
It was found that the coercivity spectra of TRM and ARM in these samples are very similar, and that even when changes occurred during heating, the changes for two remanences are quite similar in many samples. Therefore, Shaw's method of palaeointensity determination, which incorporates ARM checks to the conventional comparison of NRM and TRM coercivity spectra, gives results as reliable as those obtained by the Thellier method. Many examples were demonstrated in which TRM and ARM intensities changed substantially by heating, but without changes in the shape of their coercivity spectra. Such changes cannot normally be detected and erroneous palaeointensities with apparent internal consistency would be obtained by usual AF demagnetization methods.
Although ARM is quite similar to TRM, the rate of acquisition of ARM and TRM in weak fields varies by a factor of five among the present samples. To determine palaeointensities from the linear relation between ARM and TRM, it is necessary to determine experimentally the relative acquisition rate of these remanences. Therefore, methods based only on NRM-ARM relations would not give palaeointensities with acceptable errors.  相似文献   
103.
Several mafic rock masses, which have experienced eclogite facies metamorphism, are distributed in flat-lying non-eclogitic schists in an intermediate structural level (thermal core) of the Sanbagawa belt. The largest, Iratsu mass, and an associated peridotite, the Higashi-Akaishi mass, extend E–W for about 8 km, and N–S for about 3 km, and are surrounded by pelitic, basic and quartz schists. The Iratsu mass consists of metabasites of gabbroic and basaltic origin, with intercalations of ultramafic rocks, felsic gneiss, quartz schist and metacarbonate. The Iratsu mass can be divided into two layers along a WNW-trending metacarbonate layer. The Higashi-Akaishi mass consists of peridotite with intercalations of garnet clinopyroxenite. It is situated beneath the western half of the Iratsu mass, and their mutual boundary dips gently or steeply to the N or NE. These masses underwent eclogite, and subsequent epidote-amphibolite facies metamorphism as has been reported elsewhere. The Iratsu–Higashi-Akaishi masses and the surrounding rocks underwent ductile deformation under epidote-amphibolite facies (or lower PT) metamorphic conditions. Their foliation generally trends WNW and dips moderately to the NNE, and the mineral lineation mostly plunges to the N and NE. In non-eclogitic schists surrounding the Iratsu–Higashi-Akaishi masses, the foliation generally trends WNW and dips gently or steeply to the N or S and the mineral lineation mostly plunges to the NW, N and NE. Kinematic analysis of deformation structures in outcrops and oriented samples has been performed to determine shear senses. Consistent top-to-the-north, normal fault displacements are observed in peridotite layers of the Higashi-Akaishi mass and eclogite-bearing epidote amphibolite layers of the Iratsu mass. Top-to-the-northeast or top-to-the-northwest displacements also occur in non-eclogitic pelitic–quartz schists on the northern side of the Iratsu mass. In the structural bottom of the Iratsu–Higashi-Akaishi masses and to the south, reverse fault (top-to-the-south) movements are recognized in serpentinized peridotite and non-eclogitic schists. These observations provide the following constraints on the kinematics of the rock masses: (1) northward normal displacement of Iratsu relative to Higashi-Akaishi, (2) northward normal displacement of non-eclogitic schists on the north of the Iratsu mass and (3) southward thrusting of the Iratsu–Higashi-Akaishi masses upon non-eclogitic schists in the south. The exhumation process of the Iratsu–Higashi-Akaishi masses can be explained by their southward extrusion.  相似文献   
104.
Sato  Tadanobu  Kita  Katsutoshi  Maeda  Tomonari 《Natural Hazards》1997,16(2-3):203-218
We calculated theoretical acceleration response spectra at the ground surface in the region near the 1995 Hyogo-ken Nambu earthquake source based on the spectral moment method. To estimate earthquake motion on the ground surface, a formula of earthquake motion at base rock level was derived. The amplification effect of the ground was introduced by using multiple reflection theory. Theoretically estimated response spectrum were modified by the response spectra calculated using observed earthquake motions.  相似文献   
105.
This paper summarizes the features of ground damage toresidential fills due to the 1995 Hyogo-ken NanbuEarthquake in Japan. Many residential lands sufferedground damage to various extents in the earthquakeevent. Permanent deformation took place ingently-sloping residential fills. Some slopes asgentle as four degrees exhibited landslide-likedownward movements from dozens to hundreds ofcentimeters, so on. It is suggested that liquefactionmight be a dominant factor for displacements ingently-inclined residential fills.  相似文献   
106.
The 6km-thick Karmutsen metabasites, exposed over much of Vancouver Island, were thermally metamorphosed by intrusions of Jurassic granodiorite and granite. Observation of about 800 thin sections shows that the metabasites provide a complete succession of mineral assemblages ranging from the zeolite to pyroxene hornfels facies around the intrusion. The reaction leading to the appearance of actinolite, which is the facies boundary between prehnite-pumpellyite and prehnite-actinolite facies, was examined using calcite-free Karmutsen metabasites collected from the route along the Elk river. In the prehnite-pumpellyite facies, X Fe3+[Fe3+/(Fe3++Al)] in prehnite, pumpellyite and epidote buffered by the four-phase assemblage prehnite+pumpellyite+epidote+chlorite systematically decreases with increasing metamorphic grade. Such a trend is the reverse of that proposed by Cho et al. (1986); this may be related to the higher in the Mt. Menzies area. The actinolite-forming reaction depends on the value of X Fe3+ in pumpellyite. If using a low value of Fe3+, 3.89 Pr(0.06)+0.48 Ep(0.26)+0.60 Chl+H2O=2.10 Pm (0.08)+0.17 Act+0.88 Qz is delineated. The number in parentheses stands for the X Fe3+value in Ca-Al silicates. On the other hand, replacing the X Fe3+ of 0.08 in pumpellyite with a higher X Fe3+ value (0.24) changes the reaction to 0.41 Pm+0.02 Chl+0.42 Qz=0.11 Pr+0.62 Ep+0.10 Act+H2O. The first (hydration) reaction forms pumpellyite and actinolite on the high-temperature side, whereas the second (dehydration) reaction consumes pumpellyite to form prehnite, epidote and actinolite. The former reaction seems to explain the textural relationship of Ca-Al silicates in the study area. However, actinolite-forming reaction changes to a different reaction depending on the compositions of the participating minerals, although in the other area even physical conditions may be similar to those in the study area. Chemographic analysis of phase relations in the PrA facies indicates that the appearance of prehnite depends strongly on the bulk FeO/MgO ratio: this may explain the rarity of prehnite in common metabasites in spite of the expected dominant occurrence in the conventional pseudo-quaternary (Ca-Al-Fe3+-FM) system. An increasing FeO/MgO ratio stabilizes the Pr+Act assemblage and reduces the stability of the Pm+Act one. Therefore, the definition of pumpellyite-actinolite facies should include not only Pm+Act but also the absence of Pr+Act assemblages. In addition to the possible role of high (Cho and Liou 1987) and/or high to mask the appearance of prehnite, the effect of the FeO/MgO ratio is emphasized.  相似文献   
107.
Paleomagnetic study was performed on Mesozoic and Tertiary rocks from Peru and northernmost Chile. Comparisons of these results as well as other data from the Central Andes with paleomagnetic poles from South American craton strongly support the orocline hypothesis of Carey for the formation of the Arica (Santa Cruz) deflection. Paleomagnetic declinations of Jurassic and Cretaeous rocks are quite similar to the direction of the present-day structural trend in the Central Andes, which suggests that the mountain belt has rotated in a coherent fashion (i.e., rigid body rotation) in sections of the Central Andes. The occurrence of this deformation is certainly post-Cretaceous, with some suggestion that rotation still continued as recently as Neogene. The mechanism of this deformation is not well known, but a differential stretching of the Amazon Basin behind the Peruvian Andes is a possibility.  相似文献   
108.
109.
For the purpose of predicting the large‐displacement response of seismically isolated buildings, an analytical model for elastomeric isolation bearings is proposed. The model comprises shear and axial springs and a series of axial springs at the top and bottom boundaries. The properties of elastomeric bearings vary with the imposed vertical load. At large shear deformations, elastomeric bearings exhibit stiffening behavior under low axial stress and buckling under high axial stress. These properties depend on the interaction between the shear and axial forces. The proposed model includes interaction between shear and axial forces, nonlinear hysteresis, and dependence on axial stress. To confirm the validity of the model, analyses are performed for actual static loading tests of lead–rubber isolation bearings. The results of analyses using the new model show very good agreement with the experimental results. Seismic response analyses with the new model are also conducted to demonstrate the behavior of isolated buildings under severe earthquake excitations. The results obtained from the analyses with the new model differ in some cases from those given by existing models. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
110.
The 2004 Niigata-ken Chuetsu earthquake in Japan caused serious damage to sewage facilities such as uplift of manholes and settlement of pavement above backfill soil for pipes. This paper deals with shake table tests in a 1 g gravity field on application of recycled materials for ground improvement to mitigation of liquefaction-induced flotation of manhole during earthquakes. The recycled materials used in tests were tire chips made of waste tires and crushed gravels made of waste reinforced concrete, and they were packed in sandbags. From the test results, it was confirmed that the recycled materials packed in sandbags could be treated as one of the countermeasures to restrain the flotation of manholes and settlement of ground surrounded by sandbags.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号