首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   232篇
  免费   8篇
  国内免费   1篇
测绘学   2篇
大气科学   21篇
地球物理   44篇
地质学   63篇
海洋学   59篇
天文学   29篇
自然地理   23篇
  2023年   1篇
  2022年   1篇
  2021年   4篇
  2019年   3篇
  2018年   3篇
  2017年   6篇
  2016年   6篇
  2015年   8篇
  2014年   8篇
  2013年   10篇
  2012年   5篇
  2011年   9篇
  2010年   9篇
  2009年   13篇
  2008年   10篇
  2007年   6篇
  2006年   14篇
  2005年   12篇
  2004年   3篇
  2003年   14篇
  2002年   9篇
  2001年   7篇
  2000年   5篇
  1999年   7篇
  1998年   2篇
  1997年   2篇
  1996年   2篇
  1995年   6篇
  1994年   1篇
  1992年   2篇
  1991年   2篇
  1990年   3篇
  1989年   3篇
  1988年   1篇
  1987年   6篇
  1986年   4篇
  1985年   4篇
  1984年   3篇
  1983年   4篇
  1982年   4篇
  1981年   3篇
  1980年   4篇
  1979年   2篇
  1978年   3篇
  1977年   1篇
  1975年   1篇
  1974年   2篇
  1970年   2篇
  1963年   1篇
排序方式: 共有241条查询结果,搜索用时 15 毫秒
81.
82.
Previous studies have linked the rapid sea level rise (SLR) in the western tropical Pacific (WTP) since the early 1990s to the Pacific decadal climate modes, notably the Pacific Decadal Oscillation in the north Pacific or Interdecadal Pacific Oscillation (IPO) considering its basin wide signature. Here, the authors investigate the changing patterns of decadal (10–20 years) and multidecadal (>20 years) sea level variability (global mean SLR removed) in the Pacific associated with the IPO, by analyzing satellite and in situ observations, together with reconstructed and reanalysis products, and performing ocean and atmosphere model experiments. Robust intensification is detected for both decadal and multidecadal sea level variability in the WTP since the early 1990s. The IPO intensity, however, did not increase and thus cannot explain the faster SLR. The observed, accelerated WTP SLR results from the combined effects of Indian Ocean and WTP warming and central-eastern tropical Pacific cooling associated with the IPO cold transition. The warm Indian Ocean acts in concert with the warm WTP and cold central-eastern tropical Pacific to drive intensified easterlies and negative Ekman pumping velocity in western-central tropical Pacific, thereby enhancing the western tropical Pacific SLR. On decadal timescales, the intensified sea level variability since the late 1980s or early 1990s results from the “out of phase” relationship of sea surface temperature anomalies between the Indian and central-eastern tropical Pacific since 1985, which produces “in phase” effects on the WTP sea level variability.  相似文献   
83.
To study the wind field within the atmospheric boundary layer over the Tokyo metropolitan area, Doppler lidar observations were made 45 km north of Sagami Bay and 30 km west of Tokyo Bay, from 14 May to 15 June 2008. Doppler lidar on 27 May 2008 observed the vertical and horizontal wind structure of a well-developed sea-breeze front (SBF) penetrating from Sagami Bay. At the SBF, a strong updraft (maximum w approximately equal to 5 m s−1) was formed with a horizontal scale of about 500 m and vertical scale of 2 km. The spatial relationship between the strong updraft over the nose of the SBF and prefrontal thermal suggests that the strong updraft was triggered by interaction between the SBF and the thermal. After the updraft commenced, a collocated ceilometer observed an intense aerosol backscatter up to 2 km above ground level. The observational results suggest that the near-surface denser aerosols trapped in the head region of the SBF escaped from the nose of the SBF and were then vertically transported up to the mixing height by the strong updraft at the SBF. This implies that these phenomena occurred not continuously but intermittently. The interaction situations between the SBF and prefrontal thermal can affect the wind structure at the SBF and the regional air quality.  相似文献   
84.
85.
86.
Abstract— Silica aerogel collector tiles have been employed for the collection of particles in low Earth orbit and, more recently, for the capture of cometary particles by NASA's Stardust mission. Reliable, reproducible methods for cutting these and future collector tiles from sample return missions are necessary to maximize the science output from the extremely valuable embedded particles. We present a means of macroscopic subdivision of collector tiles by generating large‐scale cuts over several centimeters in silica aerogel with almost no material loss. The cut surfaces are smooth and optically clear allowing visual location of particles for analysis and extraction. This capability is complementary to the smaller‐scale cutting capabilities previously described (Westphal 2004; Ishii 2005a, 2005b) for removing individual impacts and particulate debris in tiny aerogel extractions. Macroscopic cuts enable division and storage or distribution of portions of aerogel tiles for immediate analysis of samples by certain techniques in situ or further extraction of samples suited for other methods of analysis. The capability has been implemented in the Stardust Laboratory at NASA's Johnson Space Center as one of a suite of aerogel cutting methods to be used in Stardust sample curation.  相似文献   
87.
88.
Abstract

The effect of the El Niño Southern Oscillation (ENSO) on rainfall characteristics in the tropical peatland areas of Central Kalimantan, Indonesia, is demonstrated. This research used rainfall data collected between 1978 and 2008. The results suggest a relationship between ENSO events and the trend in rainfall observed in the study area. Further analyses show that El Niño events have a stronger effect on the rainfall compared to La Niña events. El Niño events were also correlated to the increase in the number of days with less than 1 mm of rainfall in the dry season. The analysis reveals that the impact of El Niño events on rainfall in dry seasons is intensifying annually. Furthermore, ENSO events are not the only factors affecting rainfall trends in the observed area. Other factors, such as deforestation, may also affect the trend.

Editor Z.W. Kundzewicz

Citation Susilo, G.E., Yamamoto, K., Imai, T., Ishii, Y., Fukami, H., and Sekine, M., 2013. The effect of ENSO on rainfall characteristics in the tropical peatland areas of Central Kalimantan, Indonesia. Hydrological Sciences Journal, 58 (3), 539–548.  相似文献   
89.
There are few dust simulation studies for East Asian dust events that took place in the wintertime, when the surface conditions of the dust source region differ from those of the springtime. The soil water turns into ice when the temperature falls below freezing, and the ice might prohibit wind erosion by increasing the binding strength between soil particles. However, the contribution of frozen soil to reducing dust outbreaks remains unclear. This study investigates the effect of frozen soil on dust emission through a case study of a severe wintertime East Asian dust event that originated on 23 and 24 December 2009 in Southern Mongolia and Inner Mongolia and reached Korea on 25 and 26 December 2009 using WRF/Chem with a new dust emission scheme. Model simulations with and without the effect of frozen soil were conducted. A temperature below 0°C and relative soil saturation exceeding 40% were used for frozen soil criteria, and the frozen soil was prohibited from emitting dust. The dust concentrations derived from the simulation without the effect of frozen soil were about three times higher than the observed PM10 concentrations, while the results from the simulation with the frozen-soil effect were quite similar to those of the observation data. The simulation of the wintertime East Asian dust event with the frozen-soil effect improved the model representation. The sensitivity tests for frozen soil indicate that the criteria of frozen soil used in this study are appropriate for this case study.  相似文献   
90.

Sea levels of different atmosphere–ocean general circulation models (AOGCMs) respond to climate change forcing in different ways, representing a crucial uncertainty in climate change research. We isolate the role of the ocean dynamics in setting the spatial pattern of dynamic sea-level (ζ) change by forcing several AOGCMs with prescribed identical heat, momentum (wind) and freshwater flux perturbations. This method produces a ζ projection spread comparable in magnitude to the spread that results from greenhouse gas forcing, indicating that the differences in ocean model formulation are the cause, rather than diversity in surface flux change. The heat flux change drives most of the global pattern of ζ change, while the momentum and water flux changes cause locally confined features. North Atlantic heat uptake causes large temperature and salinity driven density changes, altering local ocean transport and ζ. The spread between AOGCMs here is caused largely by differences in their regional transport adjustment, which redistributes heat that was already in the ocean prior to perturbation. The geographic details of the ζ change in the North Atlantic are diverse across models, but the underlying dynamic change is similar. In contrast, the heat absorbed by the Southern Ocean does not strongly alter the vertically coherent circulation. The Arctic ζ change is dissimilar across models, owing to differences in passive heat uptake and circulation change. Only the Arctic is strongly affected by nonlinear interactions between the three air-sea flux changes, and these are model specific.

  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号