首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   96篇
  免费   3篇
  国内免费   2篇
测绘学   2篇
大气科学   2篇
地球物理   32篇
地质学   30篇
海洋学   19篇
天文学   14篇
自然地理   2篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2019年   2篇
  2017年   6篇
  2015年   1篇
  2014年   2篇
  2013年   6篇
  2012年   3篇
  2011年   3篇
  2010年   1篇
  2009年   4篇
  2008年   4篇
  2007年   5篇
  2006年   6篇
  2005年   1篇
  2004年   3篇
  2003年   7篇
  2002年   4篇
  2001年   2篇
  2000年   3篇
  1998年   4篇
  1997年   2篇
  1996年   2篇
  1994年   2篇
  1993年   1篇
  1992年   2篇
  1991年   3篇
  1989年   4篇
  1988年   3篇
  1987年   2篇
  1985年   2篇
  1984年   2篇
  1983年   2篇
  1982年   1篇
  1979年   2篇
  1976年   1篇
排序方式: 共有101条查询结果,搜索用时 15 毫秒
51.
The sea surface wind speed (SSWS) derived by a microwave radiometer can be contaminated by changes of the brightness temperature owing to the angle between the sensor azimuth and the wind direction (Relative Wind Direction effect: RWD effect). We attempt to apply the method proposed by Konda and Shibata (2004) to the SSWS derived by Advanced Microwave Scanning Radiometer (AMSR) on Advanced Earth Observing Satellite II (ADEOS-II), in order to correct for the RWD effect. The improvement of accuracy of the SSWS estimation amounts to roughly 60% of the error caused by the RWD effect. Comparison with in situ observation at the Tropical Atmosphere Ocean (TAO) array shows that the root mean square error of the corrected SSWS is 1.1 ms−1. It is found that the impact of the RWD effect on the estimation of the latent heat flux can amount to about 30 Wm−2 on average. We applied the method to the SSWS derived by AMSR for Earth Observing System (AMSR-E) and obtained a similar result.  相似文献   
52.
The Kurosegawa belt forms a relatively narrow terrane that can be traced continuously throughout southwest and central Japan. The major constituent continental fragments of the Kurosegawa belt include Early Paleozoic granitic rocks, high-grade metamor-phic rocks, Carboniferous metamorphic rocks (epi-dote-amphibolite facies), Triassic-Early Jurassic metamorphic rocks (pumpellyite-actinolite facies), serpentinites of unknown age, Silurian–Devonian volcanoclastic rocks intercalated with limestones, and Permian–Jurassic shallow marine sediments (e.g., Ichikawa et al., 1956; Maruyama et al., 1984; Faure, 1985; Yoshikura et al., 1990; Aitchison et al., 1991, 1996; Hada et al., 1992, 2001; Isozaki et al., 1992). These diverse rock suites are highly disrupted, form-ing lenticular bodies within the Late Permian accre-tionary complex (AC) which collectively are covered by younger (Cretaceous) marine to brackish water sediments (e.g., Aitchison et al., 1991; Isozaki et al., 1992). We characterize the tectono-stratigraphic ar-chitecture and low-grade metamorphism of the accre-tionary complex preserved in the Kurosegawa belt of the Kitagawa district in eastern Shikoku, Southwest Japan, in order to understand its internal structure, tectono-metamorphic evolution, and assessments of displacement of continental fragments within the complex.  相似文献   
53.
Sliding mass of landslides highly endangered the area along travel path, especially landslides with long travel distance. It is necessary to develop an effective prediction model for preliminarily evaluating landslide travel distance so as to improve disaster prevention and relocation. This paper collected 54 landslides with 347–4,170 m travel distance triggered by the 2008 Wenchuan earthquake to discuss the effectiveness of various influential factors on landslide travel distance and obtained an empirical model for its prediction. The results revealed that rock type, sliding source volume, and slope transition angle were the predominant factors on landslide travel distance. The validity of proposed model was verified by the satisfactory agreement between observations and predictions. Therefore, this model might be practically applicable in Wenchuan earthquake area and other similar geomorphological and geological regions.  相似文献   
54.
We have measured near-infrared colorsof the binary Kuiper Belt object (KBO)1998 WW31 using the Subaru Telescope withadaptive optics. The satellite was detectednear its perigee and apogee(0.18“ and 1.2” apart from the primary).The primary and the satellite have similar H–Kcolors, while the satellite is redder thanthe primary in J–H. Combined with the Rband magnitude previously published byVeillet et al., 2002, the color of the primaryis consistent with that of optically red KBOs. Thesatellite's R-, J-, H-colors suggest thepresence of ~1 μm absorption band dueto rock-forming minerals. If the surface of thesatellite is mainly composed by olivine, thesatellite's albedo is higher value than the canonicallyassumed value of 4%.  相似文献   
55.
Presented is a method of global adjustment of stars' right ascensions for the compilation of an independent catalog obtained with a meridian circle. The concept of the problem is shown first, in which corrections to the catalog positions of observed stars can be determined directly by solving a set of observation equations constructed over many of nights. Some parameters such as clock correction, azimuth of artificial azimuth marks, and the correction to an adopted value of the latitude are assumed to vary regularly over the observation period. The present method is applied to the determination of the absolute azimuth of the Tokyo PMC by using upper and lower transits of azimuth stars.  相似文献   
56.
Soil radon (222Rn) has been monitored during winter months under cool-temperate deciduous stands of different surface geology in Tomakomai and in Sapporo, Hokkaido, Japan. Radon level was lower in Tomakomai of immature soil of porous volcanic ash emitted from an active volcano (Mt. Tarumae), compared with those in Sapporo of alluvial sediments. In Tomakomai, mean value of the 222Rn activity concentration was higher in winter (570 Bq m?3) than in summer (350 Bq m?3) at a depth of 1 m, which is consistent with the results in cold and dry winter reported in the literature. In contrast, soil radon decreasing with decreasing soil temperature from mid-September (5.0 kBq m?3) remained low (2.6 kBq m?3) under persistent snow in Sapporo, which had already been observed in the same location. Measurements of the activity concentrations of 222Rn in snow and in snow air as well as in soil air indicate that the small amount of 222Rn is released from the ground surface to the overlying snowpack with a 222Rn flux density of 0.4 mBq m?2 s?1 under thick snow cover in Sapporo.  相似文献   
57.
The dating of radiolarian biostratigraphic zones from the Silurian to Devonian is only partially understood. Dating the zircons in radiolarian‐bearing tuffaceous rocks has enabled us to ascribe practical ages to the radiolarian zones. To extend knowledge in this area, radiometric dating of magmatic zircons within the radiolarian‐bearing Hitoegane Formation, Japan, was undertaken. The Hitoegane Formation is mainly composed of alternating beds of tuffaceous sandstones, tuffaceous mudstones and felsic tuff. The felsic tuff and tuffaceous mudstone yield well‐preserved radiolarian fossils. Zircon grains showing a U–Pb laser ablation–inductively coupled plasma–mass spectrometry age of 426.6 ± 3.7 Ma were collected from four horizons of the Hitoegane Formation, which is the boundary between the Pseudospongoprunum tauversi to Futobari solidus–Zadrappolus tenuis radiolarian assemblage zones. This fact strongly suggests that the boundary of these assemblage zones is around the Ludlowian to Pridolian. The last occurrence of F. solidus is considered to be Pragian based on the reinterpretation of a U–Pb sensitive high mass‐resolution ion microprobe (SHRIMP) zircon age of 408.9 ± 7.6 Ma for a felsic tuff of the Kurosegawa belt, Southwest Japan. Thus the F. solidus–Z. tenuis assemblage can be assigned to the Ludlowian or Pridolian to Pragian. The present data also contribute to establishing overall stratigraphy of the Paleozoic rocks of the Fukuji–Hitoegane area. According to the Ordovician to Carboniferous stratigraphy in this area, Ordovician to Silurian volcanism was gradually reduced to change the sedimentary environment into a tropical lagoon in the early Devonian. And the quiet Carboniferous environment was subsequently interrupted, throwing it once more into the volcanic conditions in the Middle Permian.  相似文献   
58.
Masanori  Kurosawa  Satoshi  Ishii  Kimikazu  Sasa 《Island Arc》2010,19(1):40-59
Fluid inclusions in quartz from miarolitic cavities, pegmatites, and quartz veins in Miocene biotite-granite plutons, Kofu, Japan, were analyzed by particle-induced X-ray emission to examine chemistries and behaviors of granite-derived fluids in island-arc granite. Most inclusions are aqueous two-phase inclusions, and halite-bearing polyphase inclusions are also observed in quartz veins in the upper part of the plutons. From element contents of fluid inclusions in the miarolitic cavities, the original fluid released from the granite plutons during solidification is inferred to have concentrations of Mn, Fe, Cu, Zn, Ge, Br, Rb, Pb, and Ba of several tens to hundreds of parts per million by weight (ppm) and a salinity of about 10 wt% NaCl equivalent. We estimated the formation conditions of the fluid to have been at about 1.3–1.9 kb and 530–600°C on the basis of the homogenization temperatures of the inclusions and the solidification conditions of the plutons. The polyphase inclusions probably originated from hypersaline fluid by boiling of part of the released fluid during its ascent in the plutons. The polyphase inclusions contain several hundreds to tens of thousands of ppm of Fe and Mn, and tens to several hundreds of ppm of Cu, Zn, Br, Rb, and Pb. The salinities are about 35 wt% NaCl equivalent. Compositional variations in two-phase inclusions from the miarolitic cavities and quartz veins are primarily explained by mineral precipitation with dilution by surface water exerting a secondary influence. Thus, chemistries and behaviors of the granite-derived fluids in the plutons can be explained by mineral precipitation, boiling, and dilution of the originally released fluid.  相似文献   
59.
Six polymorphs of MgSiO3 have been studied using molecular dynamic (MD) simulation techniques, based on the empirical potential (MAMOK), which is composed of terms to describe pairwise additive Coulomb, van der Waals attraction, and repulsive interactions. Crystal structures, bulk moduli, volume thermal expansivities, and enthalpies were simulated for the known MgSiO3 polymorphs; orthoenstatite, clinoenstatite, protoenstatite, garnet, ilmenite, and perovskite. The simulated values compare very well with the available experimental data, and the results are quite satisfactory in view of the diversity of the crystal structures of the six polymorphs, the wide range of simulated properties, and the simplicity of the MAMOK potential. MD simulation was further successfully used to study the possibile existence of a post-protoenstatite phase at high temperature, and a C2/c phase at high pressure, both phases being suggested or inferred previously from experimental works.  相似文献   
60.
The Taga Volcano Group of the Izu Peninsula is divided into four volcanoes: Older Taga, Atami, Shimo-Taga and Himenosawa. Each volcano consists of basalt-andesite lavas and volcaniclastic sediments, mainly of low alkali tholeiite composition.The activity of the Shimo-Taga Volcano is divided into three stages (early, middle and later). Rocks of the first two stages consist of lavas and volcaniclastic sediments of olivine basalt, phyric and aphyric basaltic andesite. The later stage rocks consist of volcaniclastic sediments which were erupted as mudflow deposits.Basalts and andesites of the first two stages are considered to have been derived from a zoned magma chamber. They were produced by fractional crystallization, which involved the gravitational separation of plagioclase, olivine and/or pyroxene crystals. Eruption of aphyric and phyric basaltic andesite from the upper part of the chamber occurred first, followed by olivine basalt from lower parts of the chamber.
Zusammenfassung Die Taga-Vulkan Gruppe besteht aus dem älteren Taga, dem Atami, dem Shimo-Taga und dem Himenosawa Vulkan. Jeder dieser Vulkane wird aus basaltisch-andesitischen Laven und vulkano-klastischen Sedimenten, hauptsächlich subalkalisch tholeiitischer Zusammensetzung, aufgebaut.Die Eruptionstätigkeit des Shimo-Taga Vulkans läßt sich in drei Phasen, eine Früh-, Mittel- und Spätphase untergliedern. Laven und vulkanoklastische Sedimente der ersten beiden Phasen bestehen aus Olivinbasalten, sowie aus basaltischen Andesiten mit porphyrischem und nichtporphyrischem Gefüge. Während des letzten Stadiums wurden vulkanoklastische Sedimente in Form von vulkanoklastischen Schlammströmen eruptiert.Die Basalte und Andesite der ersten beiden Stadien werden als Produkte einer zonierten Magmenkammer gedeutet. Sie entstanden durch fraktionierte Kristallisation und durch die gravitative Abtrennung von Plagioklas, Olivin und/oder Pyroxenkristallen. Der Eruption der porphyrischen und nichtporphyrischen basaltischen Andesite aus dem obersten Teil der Magmakammer folgte die Eruption von Olivinbasalten aus dem tieferen Teil der Magmakammer.
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号