首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   305篇
  免费   10篇
  国内免费   10篇
测绘学   1篇
大气科学   22篇
地球物理   76篇
地质学   94篇
海洋学   68篇
天文学   40篇
综合类   6篇
自然地理   18篇
  2021年   2篇
  2020年   5篇
  2019年   6篇
  2018年   9篇
  2017年   3篇
  2016年   8篇
  2015年   8篇
  2014年   11篇
  2013年   11篇
  2012年   17篇
  2011年   14篇
  2010年   13篇
  2009年   20篇
  2008年   14篇
  2007年   16篇
  2006年   16篇
  2005年   5篇
  2004年   14篇
  2003年   12篇
  2002年   8篇
  2001年   5篇
  2000年   7篇
  1999年   9篇
  1998年   4篇
  1997年   5篇
  1996年   3篇
  1995年   4篇
  1994年   6篇
  1993年   5篇
  1992年   2篇
  1990年   1篇
  1989年   2篇
  1988年   3篇
  1987年   8篇
  1986年   9篇
  1985年   3篇
  1984年   4篇
  1983年   2篇
  1982年   4篇
  1981年   5篇
  1980年   3篇
  1979年   2篇
  1978年   1篇
  1977年   3篇
  1976年   2篇
  1975年   2篇
  1974年   2篇
  1973年   2篇
  1972年   3篇
  1970年   1篇
排序方式: 共有325条查询结果,搜索用时 15 毫秒
321.
Branching of the Tsushima Current in the Japan Sea   总被引:4,自引:0,他引:4  
Three branches of the Tsushima Current are reproduced in a numerical model, and their formation mechanisms are studied. Two types of a two-layer, inflow-outflow model with a bottom slope along the Japanese coast are used. One has a bottom slope only in the lower layer (Model A), and the other has bottom slopes in both layers (Model B). Model B represents the typical situation in the Japan Sea, i.e., the main pycnocline intersects the bottom slope. The onshore side of the line where the pycnocline intersects the bottom slope has only one layer in Model B. Seasonal variation of inflow in the upper layer of the western half in the entrance section (the Tsushima Strait) is incorporated into the model.Three branches are formed in Model B and not in Model A. The first branch is the bottom-controlled steady current due to the topographic-effect on the upper-layer slope which exists in the one-layer region along the Japanese coast. The second branch is a temporal current which is formed along the offshore edge of the coastal one-layer region in association with the variation of inflow. The third branch is the steady western boundary current due to the planetary-effect. These results compare favorably with observations in Part I of this study.The mechanism of formation of the second branch is examined in detail. This branch is caused by the propagation of the lowest two modes of the upper shelf wave caused by the topographic-effect on the upper-layer slope which are generated by the significant increase in inflow from June to August.  相似文献   
322.
Observational data on air-sea boundary processes at the Shirahama Oceanographic Tower Station, Kyoto University, obtained in November, 1969, was analyzed and presented as an example representing the structure of growing wind-wave field. The condition was an ideal onshore wind, and the data contained continuous records of the wind speed at four heights, the wind direction, the air and water temperatures, the tides, and the growing wind waves, for more than six hours. The main results are as follows. Firstly, in both of the wind speed and the sea surface wind stress, rather conspicuous variations of about six-minute period were appreciable. Secondly, the three-seconds power law and its lemma expressed byH *=BT *3/2 and=2BT *–1/2, respectively, are very well supported by the data, whereH *(gH/u * 2) andT *(gT/u *) are the dimensionless significant wave height and period, respectively, the wave steepness,u * the friction velocity of air,g the acceleration of gravity, andB=0.062 is a universal constant. Thirdly, the spectral form for the high-frequency side of the spectral maximum is well expressed by the form of()= sgu*–4, where is the angular frequency and() the spectral density. The value of s is determined as 0.062±0.010 from the observational data. There is a conspicuous discrepancy between the spectral shape of wind waves obtained in wind-wave tunnels and those in the sea, the former containing well-defined higher harmonics of the spectral peak, and consequently there is an apparent difference in the values of s also. However, it is shown that the discrepancy of s may be eliminated by evaluating properly the energy level of the spectral form containing higher harmonics.  相似文献   
323.
More than 125 footprints of theropods from the Cretaceous Longwangzhuang Formation have been mapped in a preliminary study at a site in the Zhucheng region of China. The tracks represent at least three morphotypes. The largest morphotype is a large theropod (footprint length ∼30 cm) represented by a single trackway and an isolated natural cast. At least 10 trackways assigned to the new ichnospecies Corpulentapus lilasia represent a medium-sized biped (footprint length ∼13 cm) with very short, wide, robust, ‘tulip-shaped’ tracks and long steps (∼5 × footprint length), and a short central digit (III) indicating weak mesaxony. Corpulentapus trackways are narrow and theropod-like even though track morphology is convergent with the footprints of some ornithopods. The third morphotype, made by a medium-sized grallatorid track maker (ichnogenus Paragrallator), is about the same size (∼13 cm) as the robust morphotype, but far more elongate and gracile, with an elongate central digit (III) indicating strong mesaxony. This ichnotaxon requires detailed comparison with Grallator sensu stricto. The contrast in morphology between the two common morphotypes is striking and demonstrates that two distinct medium-sized taxa of presumed theropod affinity frequented the same habitat in significant numbers.  相似文献   
324.
白垩纪四足动物足印的生物地层学、生物年代学与遗迹相   总被引:1,自引:2,他引:1  
从全球范围来看,白垩纪四足动物的足印多数是非鸟恐龙与鸟类留下的痕迹;少量足印来自翼龙、鳄鱼、龟、哺乳动物和其他四足动物。白垩纪的足迹化石以东亚(尤其是中国和朝鲜)和北美西部的最为人所知。南美(主要是阿根廷和巴西)也有一定数量广泛分布的足迹化石,欧洲、非洲与澳大利亚的白垩纪足迹组合则鲜为人知。以白垩纪四足动物的足印记录为基础,我们对两个全球足印生物年代重新进行了检查。早白垩世生物年代以蜥脚类与鸟脚类的足迹为特征。晚白垩世生物年代中的蜥脚类足迹较少,但是鸭嘴龙、暴龙和角龙的足迹增多了。另外,白垩纪足印化石的记录中记载了许多重要的生物地层学信息,如北美白垩纪中期蜥脚类恐龙的消失,以及白垩纪末恐龙的绝灭。越来越多来自东亚的白垩纪足印记录使我们对更精细的地方性白垩纪足印生物年代学有了初步印象。因此,以地方性四足恐龙(包括鸟类)遗迹属的地层分布为基础,可以识别出三个或四个足印生物年代。种类丰富并具有地方性特色的东亚的白垩纪鸟类动物的遗迹群,可能指示白垩纪时东亚存在着一个独特而繁盛的鸟类动物群。以足印化石为基础的这一假说有待进一步的验证。  相似文献   
325.
In eastern Heilongjiang, the Upper Jurassic is marine and restricted to the Suibin and Dong’an areas, where it is characterized faunally by Callovian–Volgian (Tithonian) bivalves and florally by dinoflagellates. The Lower Cretaceous is widely distributed in eastern Heilongjiang, and characterized faunally by Berriasian–Valanginian bivalves, Barremian–Albian ammonites and Aucellina, and florally by dinoflagellates. To the west, the marine facies grade into non-marine beds. Thus, in the east, for example in the Dong’an and Dajiashan areas, near the northwestern Palaeo-Pacific, the Lower Cretaceous is marine; westward, in the Yunshan, Longzhaogou, Peide, and Zhushan areas, marine and non-marine deposits alternate, whereas further west still, e.g. in the Jixi Basin, non-marine facies are intercalated with marine beds. This regional distribution is indicative of a large, shallow embayment opening eastwards to the Palaeo-Pacific; during the Early Cretaceous successive transgressive-regressive events influenced the climate and biota of eastern Heilongjiang and northeastern China. Many of the Lower Cretaceous sections contain abundant coals, demonstrating that in this region the Early Cretaceous was an important coal-forming period. Some non-marine bivalve species are common to the Lower Cretaceous Jixi Group of eastern Heilongjiang, the Jehol Group of western Liaoning and the Transbaikalian Group of Siberia, suggesting that these groups are of comparable Early Cretaceous age.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号