全文获取类型
收费全文 | 193篇 |
免费 | 6篇 |
国内免费 | 9篇 |
专业分类
大气科学 | 16篇 |
地球物理 | 43篇 |
地质学 | 61篇 |
海洋学 | 56篇 |
天文学 | 20篇 |
自然地理 | 12篇 |
出版年
2022年 | 1篇 |
2021年 | 2篇 |
2020年 | 5篇 |
2019年 | 5篇 |
2018年 | 9篇 |
2017年 | 2篇 |
2016年 | 6篇 |
2015年 | 5篇 |
2014年 | 4篇 |
2013年 | 9篇 |
2012年 | 12篇 |
2011年 | 11篇 |
2010年 | 8篇 |
2009年 | 14篇 |
2008年 | 6篇 |
2007年 | 12篇 |
2006年 | 7篇 |
2005年 | 3篇 |
2004年 | 7篇 |
2003年 | 5篇 |
2002年 | 3篇 |
2001年 | 3篇 |
2000年 | 6篇 |
1999年 | 6篇 |
1998年 | 2篇 |
1997年 | 5篇 |
1996年 | 2篇 |
1995年 | 1篇 |
1994年 | 3篇 |
1993年 | 5篇 |
1990年 | 1篇 |
1989年 | 2篇 |
1988年 | 2篇 |
1987年 | 5篇 |
1986年 | 8篇 |
1985年 | 3篇 |
1984年 | 4篇 |
1983年 | 1篇 |
1982年 | 3篇 |
1981年 | 1篇 |
1980年 | 3篇 |
1976年 | 2篇 |
1975年 | 2篇 |
1973年 | 1篇 |
1972年 | 1篇 |
排序方式: 共有208条查询结果,搜索用时 0 毫秒
121.
With increasing pressure, MnSiO3 rhodonite stable at atmospheric pressure transforms to pyroxmangite, then to clinopyroxene and further to tetragonal garnet, which finally decomposes into MnO (rocksalt) plus SiO2 (stishovite). High temperature solution calorimetry of synthetic rhodonite, clinopyroxene and garnet forms of MnSiO3 was used to measure the enthalpies of these transitions. ΔH 974 0 for the rhodonite-clinopyroxene and ΔH 298 0 for the clinopyroxene-garnet transition are 520±490 and 8,270±590 cal/mol, respectively. The published data on the enthalpy of the rhodonite-pyroxmangite transition, phase equilibrium boundaries, compressibility and thermal expansion data are used to calculate entropy changes for the transitions. The enthalpy, entropy and volume changes are very small for all the transitions among rhodonite, pyroxmangite and clinopyroxene. The calculated boundary for the clinopyroxene-garnet transition is consistent with the published experimental results. The pyroxene-garnet transition in several materials, including MnSiO3, is characterized by a relatively small negative entropy change and large volume decrease, resulting in a small positiveP – T slope. The disproportionation of MnSiO3 garnet to MnO plus stishovite and of Mn2SiO4 olivine to garnet plus MnO are calculated to occur at about 17–18 and 14–15 GPa, respectively, at 1,000–1,500 K. 相似文献
122.
So Kazama Hirokazu Izumi Priyantha Ranjan Sarukkalige Takayuki Nasu Masaki Sawamoto 《水文研究》2008,22(13):2315-2324
The spatial and temporal distribution of the snow water equivalent (SWE), snow density and snow depth were estimated by a method combining remote sensing technology and degree‐day techniques over a study area of 370 000 km2. The advantages of this simulation model are its simplicity and the availability of degree‐day parameters, which can be successively evaluated by referring to snow area maps created from satellite images. This simulation worked very well for estimating SWE and helped to separate the areas of thin snow cover from heavier snowfall. However, shallow snow in warm regions led to some misjudgments in the snow area maps because of the time lag between when the satellite image was acquired and the simulation itself. Vulnerable areas, where a large variation in the amount of snow affects people's life, could be identified from the differences between heavy and light snow years. This vulnerability stems from a predicted lack of irrigation water for rice production caused by future climate change. The model developed in this study has the potential to contribute to water management activities and decision‐making processes when considering necessary adaptations to future climate change. Copyright © 2007 John Wiley & Sons, Ltd. 相似文献
123.
124.
Nao Kusuhashi Ai Matsumoto Masaki Murakami Takahiro Tagami Takafumi Hirata Tsuyoshi Iizuka Takeshi Handa Hiroshige Matsuoka 《Island Arc》2006,15(3):378-390
Abstract The upper Mesozoic Tetori Group contains numerous fossils of plants and marine and non‐marine animals. The group has the potential to provide key information to improve our understanding of the Middle Jurassic to Early Cretaceous biota of East Asia. However, the depositional age of the Tetori Group remains uncertain, and without good age constraints, accurate correlation with other areas is very difficult. As a first step in obtaining reliable ages for the formations within the Tetori Group, we used laser ablation‐inductively coupled plasma–mass spectrometry to measure the U–Pb ages of zircons collected from tuff beds in the Shokawa district, Takayama City, Gifu Prefecture, central Japan. The youngest reliable U–Pb ages from the tuff beds of the Ushimaru, Mitarai and Okurodani Formations are 130.2 ± 1.7, 129.8 ± 1.0 and 117.5 ± 0.7 Ma, respectively (errors represent 2 SE). These results indicate that the entire Tetori Group in the Shokawa district, which was previously believed to be correlated to the Upper Jurassic to Lower Cretaceous, is in fact correlated to the Lower Cretaceous. The maximum ages of the Ushimaru, Mitarai and Okurodani Formations are late Hauterivian to Barremian, late Hauterivian to Barremian and Barremian to Aptian, respectively. 相似文献
125.
Saravanan Mariappan Masashi Kamon Faisal Haji Ali Takeshi Katsumi Tomoyuki Akai Toru Inui Masaki Nishimura 《Geotechnical and Geological Engineering》2011,29(5):881-898
This paper addresses the study conducted on the performance of landfill liner interface parameters. Interface shear strength
parameters for various combinations of 9 different lining materials were studied and presented in this paper. This comprehensive
testing program covers the interfaces between: (1) soil and compacted clay liner (CCL), (2) geomembrane (HDPEs or PVC) and
soil, (3) geosynthetic clay liner (GCL)/CCL and soil, (4) geomembrane and geotextile, (5) geotextile and soil, (6) geotextile
and GCL/CCL, and (7) geomembrane and GCL/CCL. The experiments were conducted for both at dry or optimum moisture condition
and at saturated or wet condition. The interface performance under both conditions were compared to access the material performances.
Tabulated summaries of interface test data under dry or optimum moisture condition (OMO) and saturated or wet condition are
presented in the paper. 相似文献
126.
The chemical Th-U-total Pb isochron ages of Jiaodong and Jiaonan metamorphic rocks in the Shandong Peninsula, eastern China 总被引:3,自引:0,他引:3
Abstract The chemical Th-U-total Pb isochron method (CHIME) was applied to determine the age of monazite and thorite in five gneisses and zircon in an ultra high-pressure (UHP) phengite schist from the Su-Lu region, eastern China. The CHIME ages and isotopic ages reported in the literature show that gneisses in the Su-Lu region are divided into middle Proterozoic (1500–1720 Ma) and Mesozoic (100–250 Ma) groups. The Proterozoic group includes paragneiss and orthogneiss of the amphibolite-granulite facies, and their protolith age is late Archean-early Proterozoic. The Mesozoic group is mainly composed of orthogneiss of the greenschist-epidote amphibolite facies, and the protolith age is Middle Paleozoic-Early Proterozoic. The Proterozoic and Mesozoic gneisses occupy northern and southern areas of the Su-Lu region, respectively, which are divided by a major Wulian-Qingdao-Yantai fault. Ultra high-pressure metamorphic rocks occur as blocks in the Mesozoic gneisses, and form a UHP complex.
The UHP phengite schist in the Mesozoic orthogneiss contains detrital zircons with late Proterozoic CHIME age ( ca 860 Ma). Age of the UHP metamorphism is late Proterozoic or younger, and protolith age of the UHP metamorphic rocks is probably different from that of the surrounding Mesozoic gneisses. 相似文献
The UHP phengite schist in the Mesozoic orthogneiss contains detrital zircons with late Proterozoic CHIME age ( ca 860 Ma). Age of the UHP metamorphism is late Proterozoic or younger, and protolith age of the UHP metamorphic rocks is probably different from that of the surrounding Mesozoic gneisses. 相似文献
127.
Al-containing MgSiO3 perovskites of four different compositions were synthesized at 27 GPa and 1,873 K using a Kawai-type high-pressure apparatus:
stoichiometric compositions of Mg0.975Si0.975Al0.05O3 and Mg0.95Si0.95Al0.10O3 considering only coupled substitution Mg2+ + Si4+ = 2Al3+, and nonstoichiometric compositions of Mg0.99Si0.96Al0.05O2.985 and Mg0.97Si0.93Al0.10O2.98 taking account of not only the coupled substitution but also oxygen vacancy substitution 2Si4+ = 2Al3+ + VO¨. Using the X-ray diffraction profiles, Rietveld analyses were performed, and the results were compared between the stoichiometric
and nonstoichiometric perovskites. Lattice parameter–composition relations, in space group Pbnm, were obtained as follows. The a parameters of both of the stoichiometric and nonstoichiometric perovskites are almost constant in the X
Al range of 0–0.05, where X
Al is Al number on the basis of total cation of two (X
Al = 2Al/(Mg + Si + Al)), and decrease with further increasing X
Al. The b and c parameters of the stoichiometric perovskites increase linearly with increasing Al content. The change in the b parameter of the nonstoichiometric perovskites with Al content is the same as that of the stoichiometric perovskites within
the uncertainties. The c parameter of the nonstoichiometric perovskites is slightly smaller than that of the stoichiometric perovskites at X
Al of 0.10, though they are the same as each other at X
Al of 0.05. The Si(Al)–O1 distance, Si(Al)–O1–Si(Al) angle and minimum Mg(Al)–O distance of the nonstoichiometric perovskites
keep almost constant up to X
Al of 0.05, and then the Si(Al)–O1 increases and both of the Si(Al)–O1–Si(Al) angle and minimum Mg(Al)–O decrease with further
Al substitution. These results suggest that the oxygen vacancy substitution may be superior to the coupled substitution up
to X
Al of about 0.05 and that more Al could be substituted only by the coupled substitution at 27 GPa. The Si(Al)–O1 distance and
one of two independent Si(Al)–O2 distances in Si(Al)O6 octahedra in the nonstoichiometric perovskites are always shorter than those in the stoichiometric perovskite at the same
Al content. These results imply that oxygen defects may exist in the nonstoichiometric perovskites and distribute randomly. 相似文献
128.
129.
Conditions for the formation of large meander (LM) of the Kuroshio are inferred from observational data, mainly obtained in the 1990s. Propagation of the small meander of the Kuroshio from south of Kyushu to Cape Shiono-misaki is a prerequisite for LM formation, and three more conditions must be satisfied. (1) The cold eddy carried by small meander interacts with the cold eddy in Enshu-nada east of the cape. During and just after the propagation of small meander, (2) the Kuroshio axis in the Tokara Strait maintains the northern position and small curvature, and (3) current velocity of the Kuroshio is not quite small. If the first condition is not satisfied, the Kuroshio path changes little. If the first condition is satisfied, but the second or third one is not, the Kuroshio transforms to the offshore non-large-meander path, not the LM path. All three conditions must be satisfied to form the large meander. For continuance of the large meander, the Kuroshio must maintain the small curvature of current axis in the Tokara Strait and a medium or large range of velocity and transport. These conditions for formation and continuance may be necessary for the large meander to occur. Moreover, effects of bottom topography on position and structure of the Kuroshio are described. Due to topography, the Kuroshio changes horizontal curvature and vertical inclination of current axis in the Tokara Strait, and is confined into either of two passages over the Izu Ridge at mid-depth. The former contributes to the second condition for the LM formation. 相似文献
130.
Subduction of mantle wedge peridotites: Evidence from the Higashi-akaishi ultramafic body in the Sanbagawa metamorphic belt 总被引:1,自引:0,他引:1
The Higashi-akaishi garnet-bearing ultramafic body in the Sanbagawa metamorphic belt, Southwest Japan, represents a rare example of oceanic-type ultrahigh-pressure metamorphism. The body of 2 km × 5 km is composed mostly of anhydrous dunite with volumetrically minor lenses of clinopyroxene-rich rocks. Dunite samples contain high Ir-type platinum group elements (PGE) and Cr in bulk rocks, high Mg and Ni in olivine, and high Cr in spinel. On the other hand, clinopyroxene-rich rocks contain low concentrations of Ir-type PGE and Cr, high concentrations of fluid-mobile elements in bulk rocks, and low Ni and Mg in olivine. Clinopyroxene is diopsidic with low Al2 O3 . The compositions of bulk rocks and mineral chemistry of spinel, olivine, and clinopyroxene suggest that the olivine-dominated rocks are residual mantle peridotites after high degrees of influx partial melting, and that the clinopyroxene-rich rocks are cumulates of subduction-related melts. Thus, the Higashi-akaishi ultramafic body originated from the interior of the mantle wedge, most likely the forearc upper mantle. It was then incorporated into the Sanbagawa subduction channel by a mantle flow, and underwent high pressure metamorphism to a depth greater than 100 km. Such a strong active flow in the mantle wedge is likely facilitated by the lack of serpentinites along the interface between the slab and the overlying mantle, as it was too hot for serpentine. These unusually hot conditions and strong active mantle flow may reflect conditions in the earliest stage of development of subduction, and may have been maintained by massive upwelling and subsequent eastward flow of asthenospheric mantle in the northeastern Asian continent in Cretaceous time when the Sanbagawa belt began to form. 相似文献