首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   197篇
  免费   6篇
  国内免费   9篇
大气科学   16篇
地球物理   43篇
地质学   61篇
海洋学   59篇
天文学   21篇
自然地理   12篇
  2022年   1篇
  2021年   2篇
  2020年   5篇
  2019年   5篇
  2018年   9篇
  2017年   2篇
  2016年   6篇
  2015年   5篇
  2014年   4篇
  2013年   9篇
  2012年   12篇
  2011年   11篇
  2010年   8篇
  2009年   14篇
  2008年   6篇
  2007年   12篇
  2006年   7篇
  2005年   3篇
  2004年   7篇
  2003年   5篇
  2002年   3篇
  2001年   3篇
  2000年   6篇
  1999年   6篇
  1998年   2篇
  1997年   5篇
  1996年   2篇
  1995年   1篇
  1994年   4篇
  1993年   5篇
  1992年   1篇
  1990年   1篇
  1989年   2篇
  1988年   2篇
  1987年   5篇
  1986年   8篇
  1985年   3篇
  1984年   4篇
  1983年   1篇
  1982年   3篇
  1981年   2篇
  1980年   3篇
  1976年   2篇
  1975年   2篇
  1973年   1篇
  1972年   1篇
  1971年   1篇
排序方式: 共有212条查询结果,搜索用时 0 毫秒
71.
In this study, we conducted a numerical simulation of a rapid development of an arctic cyclone (AC) that appeared in June 2008 using a cloud resolving global model, Nonhydrostatic ICosahedral Atmospheric Model (NICAM). We investigated the three dimensional structure and intensification mechanism of the simulated AC that developed to the minimum sea level pressure of 971 hPa in the model. According to the result, the AC indicates a barotropic structure with a warm core in the lower stratosphere and a cold core in the troposphere. The development of the AC is accompanied by an intense mesoscale cyclone (MC) showing baroclinic structure with a marked local arctic front. The upper level warm core of the AC is formed by an adiabatic heating associated with the downdraft in the lower stratosphere. The rapid development of the AC is caused by the combination of the intensification of the upper level warm core and the merging with the baroclinically growing MC in the lower level. The merging of the AC and MC and the vertical vortex coupling with the upper air polar vortex are the most important mechanisms for the rapid development of the arctic cyclone.  相似文献   
72.
A calorimetric study of the ilmenite and lithium niobate polymorphs of FeTiO3 was undertaken to assess the high-pressure stabilities of these phases. Ilmenite is known to be the stable phase at ambient pressure, but the lithium niobate form may be a quench phase from a perovskite form which has been previously observed in situ at high pressure.In this study, the lithium niobate phase of FeTiO3 was synthesized from an ilmenite starting material at 15– 16 GPa and 1473 K, using a uniaxial split-sphere high-pressure apparatus (USSA 2000). The energetics of the ilmenite to lithium niobate transformation were investigated through transposed-temperature drop calorimetry. The heat of back-transformation of lithium niobate to ilmenite was measured by dropping the sample in argon from ambient conditions to a temperature where the transformation occurs spontaneously. In drops made at 977 K, an intermediate x-ray amorphous phase was encountered. At 1273 K, the transformation went to completion. A value of -13.5±1.2 kJ/mol was obtained for the heat of transformation.  相似文献   
73.
Pacific ocean circulation based on observation   总被引:1,自引:1,他引:1  
A thorough understanding of the Pacific Ocean circulation is a necessity to solve global climate and environmental problems. Here we present a new picture of the circulation by integrating observational results. Lower and Upper Circumpolar Deep Waters (LCDW, UCDW) and Antarctic Intermediate Water (AAIW) of 12, 7, and 5 Sv (106 m3s−1) in the lower and upper deep layers and the surface/intermediate layer, respectively, are transported to the North Pacific from the Antarctic Circumpolar Current (ACC). The flow of LCDW separates in the Central Pacific Basin into the western (4 Sv) and eastern (8 Sv) branches, and nearly half of the latter branch is further separated to flow eastward south of the Hawaiian Ridge into the Northeast Pacific Basin (NEPB). A large portion of LCDW on this southern route (4 Sv) upwells in the southern and mid-latitude eastern regions of the NEPB. The remaining eastern branch joins nearly half of the western branch; the confluence flows northward and enters the NEPB along the Aleutian Trench. Most of the LCDW on this northern route (5 Sv) upwells to the upper deep layer in the northern (in particular northeastern) region of the NEPB and is transformed into North Pacific Deep Water (NPDW). NPDW shifts southward in the upper deep layer and is modified by mixing with UCDW around the Hawaiian Islands. The modified NPDW of 13 Sv returns to the ACC. The remaining volume in the North Pacific (11 Sv) flows out to the Indian and Arctic Oceans in the surface/intermediate layer.  相似文献   
74.
The interannual variations of sea level at Chichi-jima and five other islands in the subtropical North Pacific are calculated for 1961–95 with a model of Rossby waves excited by wind. The Rossby-wave forcing is significant east of 140°E. Strong forcing of upwelling (downwelling) Rossby wave occurs during El Niño (La Niña) and warm (cold) water anomaly in the eastern equatorial Pacific. The first and second baroclinic modes of Rossby wave are more strongly generated than the barotropic mode in the study area. A higher vertical mode of Rossby wave propagates more slowly and is more decayed by eddy dissipation. The best coefficient of vertical eddy dissipation is determined by comparing the calculated sea level with observation. The variation in sea level at Chichi-jima is successfully calculated, in particular for the long-term change of the mean level between before and after 1986 with a rise in 1986 as well as the variations with periods of two to four years after 1980. It is concluded that variations of sea level at Chichi-jima are produced by wind-forced Rossby waves, the first baroclinic wave primarily and the barotropic wave secondly. The calculation for other islands is less successful. Degree of the success in calculation almost corresponds to a spatial difference in quantity of wind data, and seems to be determined by quality of wind data.  相似文献   
75.
Simultaneous observations of the six transitions of SiO for 106 late-type stars were made. The SiO maser emission was detected in 83 stars. Thev=3 maser emission was detected in eight stars, and the29SiOv=0 emission in six stars. The29SiOv=0 emission is stronger and narrower than that of28SiO, suggesting that the29SiO emission is masing.Paper presented at the IAU Third Asian-Pacific Regional Meeting, held in Kyoto, Japan, between 30 September–6 October, 1984.  相似文献   
76.
The intensity of Saturn’s infrared aurora is investigated using Cassini VIMS images acquired during October 2006–February 2009. Polar and main oval auroral regions were defined in both hemispheres, which extend between 0–10° and 10–25° co-latitude, respectively. Average intensities were computed for these regions and compared. While the northern and southern main oval regions covered a similar range of intensities, the southern main oval was on average more intense by a factor of ∼1.3. The emission from the southern polar region was usually less intense than the main oval emissions, while this was only the case for approximately half of the northern hemisphere images. The northern hemisphere polar region displayed intensities more than twice as high as those in the south and the difference between the two hemispheres was most pronounced on the dayside. In general, more intense polar emissions were accompanied by more intense main oval emissions. Possible explanations for the hemispheric and latitudinal differences are discussed in terms of particle energies and fluxes, ionospheric conductivity, temperature and magnetic field strength.  相似文献   
77.
Fluctuation of dissolved organic carbon (DOC) was studied during 1971–1972 at monthly intervals in surface layers of Sagami Bay. Concentration of DOC varied from 0.8 to 1.7 mgC/l in surface water (0 m). Maximum concentration of 1.7 mgC/l was observed in July 1971 and after then DOC decreased gradually to a minimum of 0.8 mgC/l in May 1972. The fluctuation of DOC during the observation periods seems to have close relations with those of water temperature and salinity. High DOC concentration found in summer months may be associated with bloom of phytoplankton or intrusion of seawater from Tokyo Bay and/or inland water containing high DOC.  相似文献   
78.
Variations of water and flow in Sagami Bay in relation to the Kuroshio path variations are examined by using 100m-depth temperature and salinity data from 25 stations as well as sea level data from five stations (Minami-Izu, ItÔ, Ôshima, Aburatsubo, Mera). In regard to temperature, anomalies from the mean seasonal variations are used. Results show that water properties are clearly different between the three typical paths of the Kuroshio. The difference is more remarkable in temperature than in salinity; temperature is higher during the typical large-eander (LM) path, and lower during the offshore non-large-meander (NLM) path, compared with the nearshore NLM path. Temperature anomaly and salinity distributions, as well as the Ôshima minus Minami-Izu and Ôshima minus Mera sea-level differences strongly suggest that the flows during the typical LM path are distributed as hitherto described in past studies, that is, water in the mouth region of the bay flows clockwise around Ôshima from the west channel to the east channel, and a counterclockwise eddy exists in the interior. On the other hand, flows during the nearshore and offshore NLM paths seem to be quite different from those during the typical LM path; velocities are very weak, and the directions of circulation is frequently reversed. This tendency also can be seen during parts of LM period in which the Kuroshio takes a non-typical LM path.Water properties in Sagami Bay are most characteristic during transitions between nearshore and offshore NLM paths. During transitions from nearshore to offshore NLM paths, temperatures are extremely high as a whole in the bay, while during reverse transitions, both temperatures and salinities are very low in the entire region.  相似文献   
79.
Transitions between the three typical paths of the Kuroshio south of Japan (the nearshore and offshore non-large-meander paths and the large-meander path) are described using sea level data at Miyake-jima and HachijÔ-jima in the Izu Islands and temperature data at a depth of 200 m observed from 1964 to 1975 and in 1980.In transitions between the nearshore and offshore non-large-meander paths the variation of the Kuroshio path occurs first in the region off Enshû-nada between the Kii Peninsula and the Izu Ridge and subsequently over the ridge. In the nearshore to offshore transition the offshore displacement of the path occurs first off Enshû-nada and then develops southeastwardly in the direction of HachijÔ-jima. In the reverse transition shoreward displacement occurs first off Enshû-nada and then throughout the region west and east of the Izu Ridge. The position of the Kuroshio south of Cape Shiono-misaki (the southernmost tip of the Kii Peninsula) is almost fixed near the coast throughout these transition periods, and significant variations of the Kuroshio path only occur east of the cape. The nearshore to offshore and offshore to nearshore transitions can be estimated to take about 25 and 35 days, respectively, during which the variation of the Kuroshio path over the Izu Ridge occurs for the last 11 and 25 days.The transitions between the non-large-meander and large-meander paths show that the large-meander path is mostly formed from the nearshore non-large-meander path and always changes to the offshore non-large-meander path.  相似文献   
80.
Although the Tsushima Current exhibits a complicated meander in the interior region of the Japan Sea, its path is more regular in the southwest region near the Tsushima Strait, and three branches have often been recognized there by many investigators. However, the detailed structures and temporal variabilities of these branches have not been clarified, and so they are studied here by analysing temperature, salinity and sea level data. It is shown that the existence of the first branch (the nearshore branch along the Japanese coast) can be detected from salinity distributions at least during the period from March to August. The third branch (the Eastern Korean Current) exists in all seasons. On the other hand, the second branch (the offshore branch) is seasonally variable and can be identified only in summer from June to August. Along the Japanese coast of southwest Japan Sea, the main pycnocline intersects the gentle slope on the shelf at a depth between 150 and 200 m. The first branch is found on the coastal side of the line where the main pycnocline intersects the bottom slope. On the other hand, the second branch is formed just on the seaward side of this line. Sea level differences in the Tsushima Strait, i.e., between Hakata and Izuhara and between Izuhara and Pusan, show that the seasonal variation of the surface velocity (or volume transport) is small in the eastern channel and large in the western channel. The period during which the surface velocity and volume transport in the western channel increase corresponds well to the period during which the second branch exists. These results suggest that the effects of bottom topography and oceanic stratification in the Japan Sea as well as the time variation of inflow through the western channel of the Tsushima Strait play important roles in the formation of the second branch.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号