首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   197篇
  免费   6篇
  国内免费   9篇
大气科学   16篇
地球物理   43篇
地质学   61篇
海洋学   59篇
天文学   21篇
自然地理   12篇
  2022年   1篇
  2021年   2篇
  2020年   5篇
  2019年   5篇
  2018年   9篇
  2017年   2篇
  2016年   6篇
  2015年   5篇
  2014年   4篇
  2013年   9篇
  2012年   12篇
  2011年   11篇
  2010年   8篇
  2009年   14篇
  2008年   6篇
  2007年   12篇
  2006年   7篇
  2005年   3篇
  2004年   7篇
  2003年   5篇
  2002年   3篇
  2001年   3篇
  2000年   6篇
  1999年   6篇
  1998年   2篇
  1997年   5篇
  1996年   2篇
  1995年   1篇
  1994年   4篇
  1993年   5篇
  1992年   1篇
  1990年   1篇
  1989年   2篇
  1988年   2篇
  1987年   5篇
  1986年   8篇
  1985年   3篇
  1984年   4篇
  1983年   1篇
  1982年   3篇
  1981年   2篇
  1980年   3篇
  1976年   2篇
  1975年   2篇
  1973年   1篇
  1972年   1篇
  1971年   1篇
排序方式: 共有212条查询结果,搜索用时 15 毫秒
31.
32.
The effect of topography on moss vegetation is examined to clarify the processes that affect the colonization of polar deserts on continental Antarctica. Data on the presence of the mosses Bryum pseudotriquetrum and Pottia heimii, and relative altitude were recorded. The altitude measurements were used to infer the underlying topographical attributes of the substrate in the study plots. Specifically, the local distribution of moss plants was clarified using the topographical attributes to construct generalized linear mixed models (GLMMs). The models suggested that steep slopes and convex microhabitats within areas of concave general relief (at the plot scale 4 × 4 m) promoted the establishment of moss. This correspondence to general relief was more apparent for B. pseudotriquetrum than for P. heimii. Among the study plots, general relief was found to be an important determinant of the precise spatial distribution of B. pseudotriquetrum. The standard surface estimated using the robust methods presented in this study is shown to be more accurate for describing moss distribution than the prevailing least-squares method.  相似文献   
33.
Before the Kobe earthquake, an anomalous increase in atmospheric Rn concentration was observed. By separating the measured concentration of atmospheric Rn into three components according to the distance from the monitoring station, the variation of Rn exhalation rate can be estimated for the respective area using the daily minimum and maximum concentrations. The mean rate of Rn exhalation gradually increased in an area of 20 km around the monitoring station, becoming five times higher than normal in the period between October 1994 and the date of the earthquake. This area had a large co-seismic displacement of up to 30 cm, which roughly corresponds to the crustal strain of 10−6-order, and it is considered the main source for the atmospheric Rn prior to the Kobe earthquake. Analyses revealed that the pre-seismic change in the atmospheric Rn concentration exhibited an anomalous pattern which would yield information on the spatial distribution of the mechanical response of the ground.  相似文献   
34.
A new method is presented to process and correct full-depth current velocity data obtained from a lowered acoustic Doppler current profiler (LADCP). The analysis shows that, except near the surface, the echo intensity of a reflected sound pulse is closely correlated with the magnitude of the difference in vertical shear of velocity between downcast and upcast, indicating an error in velocity shear. The present method features the use of echo intensity for the correction of velocity shear. The correction values are determined as to fit LADCP velocity to shipboard ADCP (SADCP) and LADCP bottom-tracked velocities. The method is as follows. Initially, a profile of velocity relative to the sea surface is obtained by integrating vertical shears of velocity after low-quality data are rejected. Second, the relative velocity is fitted to the velocity at 100–800 dbar measured by SADCP to obtain an “absolute” velocity profile. Third, the velocity shear is corrected using the relationship between the errors in velocity shears and echo intensity, in order to adjust the velocity at sea bottom to the bottom-tracked velocity measured by LADCP. Finally, the velocity profile is obtained from the SADCP-fitted velocity at depths less than 800 dbar and the corrected velocity shear at depths greater than 800 dbar. This method is valid for a full-depth LADCP cast throughout which the echo intensity is relatively high (greater than 75 dB in the present analysis). Although the processed velocity may include errors of 1–2 cm s−1, this method produced qualitatively good current structures in the Northeast Pacific Basin that were consistent with the deep current structures inferred from silicate distribution, and the averaged velocities were significantly different from those calculated by the Visbeck (2002) method.  相似文献   
35.
在山东省莒南地质公园内发现6个小型恐龙足迹化石,被归入足迹属Minisauripus。化石产于下白垩统大盛群田家楼组.时代为早白垩世巴列姆(Barremian)-阿普特期(Apdan)。5个较大,长约6cm,产于下部“主”层面上,其中4个组成2节行迹:1个较小,长约3cm,位于“主”层面30cm之上的上部层面上。山东Minisauripus的特征是:足迹个体小(长3.1~5.6cm,宽2.0~3.7cm),三趾型,略不对称;足迹纵长,各趾近平行,趾垫较清晰;趾末端较钝,但爪迹较尖。Ⅲ趾比Ⅳ趾略长,而Ⅳ趾比Ⅱ趾略长且窄。此外,步幅较长,足长与步长之比约为10:1。与四川、韩国Minisau却淞不同之处是:足迹个体较大,长约是它们的2倍。继中国四川和韩国之后,山东是Minisau而淞在全球的第三个发现点。  相似文献   
36.
Spectroscopic observations of OH airglow undertaken on May 2, 2006 at Uji, Japan reveal variations in intensity and rotational temperature related to the passage of an atmospheric gravity wave. The variations exhibit a period of approximately 1 h and magnitudes of 2–6% in intensity and 0.5–2% in rotational temperature. The vertical wavelength and intrinsic frequency of the atmospheric gravity wave were determined from the horizontal wavelength derived by an OH airglow imager, the background horizontal wind velocity obtained by the middle and upper atmosphere (MU) radar, and the dispersion relationship. The observed variations are consistent with the values calculated using the model of Liu, A.Z., Swenson, G.R. [2003. A modeling study of O2 and OH airglow perturbations induced by atmospheric gravity waves. J. Geophys. Res. 108 (No. D4), 4151. doi:10.1029/2002JD002474].  相似文献   
37.
38.
Hydrographic data show that the meridional deep current at 47°N is weak and southward in northeastern North Pacific; the strong northward current expected for an upwelling in a flat-bottom ocean is absent. This may imply that the eastward-rising bottom slope in the Northeast Pacific Basin contributes to the overturning circulation. After analysis of observational data, we examine the bottom-slope effect using models in which deep water enters the lower deep layer, upwells to the upper deep layer, and exits laterally. The analytical model is based on geostrophic hydrostatic balance, Sverdrup relation, and vertical advection–diffusion balance of density, and incorporates a small bottom slope and an eastward-increasing upwelling. Due to the sloping bottom, current in the lower deep layer intensifies bottomward, and the intensification is weaker for larger vertical eddy diffusivity (K V), weaker stratification, and smaller eastward increase in upwelling. Varying the value of K V changes the vertical structure and direction of the current; the current is more barotropic and flows further eastward as K V increases. The eastward current is reproduced with the numerical model that incorporates the realistic bottom-slope gradient and includes boundary currents. The interior current flows eastward primarily, runs up the bottom slope, and produces an upwelling. The eastward current has a realistic volume transport that is similar to the net inflow, unlike the large northward current for a flat bottom. The upwelling water in the upper deep layer flows southward and then westward in the southern region, although it may partly upwell further into the intermediate layer.  相似文献   
39.
To date, the intraseasonal variation of raindrop size distribution(DSD) in response to the Madden–Julian Oscillation(MJO) has been examined only over the Indonesian Maritime Continent, particularly in Sumatra. This paper presents the intraseasonal variation of DSD over the Indian Ocean during the Cooperative Indian Ocean experiment on Intraseasonal Variability in the Year 2011(CINDY 2011) field campaign. The DSDs determined using a Joss–Waldvogel disdrometer,which was installed on the roof of the anti-rolling system of the R/V Mirai during stationary observation(25 September to 30 November 2011) at(8°S, 80.5°E), were analyzed. The vertical structure of precipitation was revealed by Tropical Rainfall Measuring Mission Precipitation Radar(version 7) data. While the general features of vertical structures of precipitation observed during the CINDY and Sumatra observation are similar, the intraseasonal variation of the DSD in response to the MJO at each location is slightly different. The DSDs during the active phase of the MJO are slightly broader than those during the inactive phase, which is indicated by a larger mass-weighted mean diameter value. Furthermore, the radar reflectivity during the active MJO phase is greater than that during the inactive phase at the same rainfall rate. The microphysical processes that generate large-sized drops over the ocean appear to be more dominant during the active MJO phase, in contrast to the observations made on land(Sumatra). This finding is consistent with the characteristics of radar reflectivity below the freezing level, storm height, bright band height, cloud effective radius, and aerosol optical depth.  相似文献   
40.
Sea levels south of Japan from 1964 to 1975 are examined in terms of the nearshore and offshore non-large-meander (NLM) paths of the Kuroshio and the transitions between them.The sea-level anomalies from the annual variations on the south coast of Japan are much larger during the transition from the nearshore to offshore NLM paths than during the reverse transition by 9 cm on average. This characteristic can be seen only in the coastal region of the Kuroshio-flowing area, so that the sea-level difference of Naze minus Nishinoomote (indicator of Kuroshio velocity) during the offshore to nearshore transition is larger by 15 cm than during the reverse transition.The transition from the offshore to nearshore NLM paths occurs when the velocity of the Kuroshio is large or increasing, while the nearshore to offshore transition occurs when it is small or decreasing. The former transition occurs whenever the velocity increases greatly, whereas the latter one does not always occur even though the velocity decreases.The sea-level difference between Kushimoto and Uragami is highly coherent with the alternate appearance of the nearshore and offshore NLM paths. Offshore NLM paths longer than 2.5 months appear during large falls of the sea-level difference of Kushimoto minus Uragami, while large rises of the sea-level difference correspond to long-lasting nearshore NLM paths. The mean sea-level difference during the nearshore NLM path is larger by 4 cm than that during the offshore NLM path.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号