首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7044篇
  免费   222篇
  国内免费   85篇
测绘学   201篇
大气科学   591篇
地球物理   1633篇
地质学   2644篇
海洋学   750篇
天文学   1072篇
综合类   27篇
自然地理   433篇
  2023年   21篇
  2022年   67篇
  2021年   105篇
  2020年   110篇
  2019年   107篇
  2018年   231篇
  2017年   232篇
  2016年   308篇
  2015年   224篇
  2014年   262篇
  2013年   371篇
  2012年   315篇
  2011年   447篇
  2010年   352篇
  2009年   455篇
  2008年   400篇
  2007年   314篇
  2006年   317篇
  2005年   293篇
  2004年   398篇
  2003年   295篇
  2002年   200篇
  2001年   142篇
  2000年   145篇
  1999年   101篇
  1998年   130篇
  1997年   83篇
  1996年   53篇
  1995年   61篇
  1994年   57篇
  1993年   49篇
  1992年   54篇
  1991年   40篇
  1990年   42篇
  1989年   24篇
  1988年   20篇
  1987年   28篇
  1986年   31篇
  1985年   23篇
  1984年   30篇
  1983年   33篇
  1982年   27篇
  1981年   30篇
  1980年   17篇
  1978年   30篇
  1977年   23篇
  1976年   19篇
  1975年   24篇
  1974年   20篇
  1973年   19篇
排序方式: 共有7351条查询结果,搜索用时 31 毫秒
31.
Palynological analysis of twelve wells shows that the metamorphic gradient of the pre-Mesozoic in the Kasba Tadla Basin of Morocco increases rapidly northwest-, southeast-, and eastward, from the center of the Basin. In the center, the Ordovician may still be releasing mobile hydrocarbons.
Zusammenfassung Eine palynologische Untersuchung von zwölf Bohrungen zeigt, daß der thermale Gradient sich im Premesozoikum des Kasba-Tadla-Beckens in Marokko vom Zentrum des Beckens aus nach Nordwesten, Südosten und Osten schnell vergrößert. Es ist sehr wohl möglich, daß das Ordovizium des Beckenzentrums noch flüssige und gasförmige Kohlenwasserstoffverbindungen abgibt.

Résumé L'analyse palynologique de 12 sondages montre que le gradient métamorphique du pré-Mésozoïque dans le Basin du Kasba Tadla, au Maroc, augmente à partir du centre du Bassin vers le nordouest, le sudest et vers l'est. Il est possible que l'Ordovicien de la partie centrale du Bassin produise encore des hydrocarbures liquides et gaseux.

12 , Kasba Tadla -, - . , .


The authors gratefully acknowledge support of this project through Grant GF-32510-X from the National Science Foundation, Washington, D.C., U.S.A.  相似文献   
32.
Copper (Cu) is an essential element for biological systems, however, when present in excess, is toxic. Metallothioneins can play an important role in Cu homeostasis and detoxification. Moreover, Cu can catalyse the production of toxic hydroxyl radicals that cause lipid peroxidation but defence systems in the cells can limit the oxidative damage. The present study was performed to investigate the effect of three Cu concentrations (0.5, 2.5 and 25 μg l−1) on the response of antioxidant enzyme activities (superoxide dismutase (SOD), catalase (CAT), selenium-dependent glutathion peroxidase and total glutathion peroxidase), total proteins, metallothioneins (MT), malondialdehyde (MDA) concentrations in the gills of the clam, Ruditapes decussatus. The activity of antioxidant enzymes and total proteins, MT and MDA concentrations were measured in the gills of the clams after 1, 3, 7, 14, 21 and 28 days of Cu exposure. Results indicate that Cu only induces an imbalance in the oxygen metabolism during the first week of Cu exposure due to a decrease in mitochondrial SOD and CAT, selenium-dependent and total glutathion peroxidase activities. Cu also causes lipid peroxidation, measured by the MDA formation, that was Cu dependent. In the gills of clams exposed to 25 μg Cu/l, the excess of Cu triggers the induction of MT synthesis after 3 days of exposure.  相似文献   
33.
The Silesia–Cracow district in Poland has been one of the world’s principal sources of zinc from nonsulfide zinc ore (Polish: galman). The still remaining nonsulfide ore resources can be estimated at 57 Mt at 5.6% Zn and 1.4% Pb. Nonsulfide mineralization is mainly hosted by Lower Muschelkalk (Triassic) limestone and is associated with different generations of the hydrothermal ore-bearing dolomite (OBD I, II, III). A fundamental ore control is believed to have been exerted by the basement faults, which were repeatedly reactivated during the Alpine tectonic cycle, leading to the formation of horst-and-graben structures: these dislocations may have caused short periods of emersion and the circulation of meteoric waters during the Cenozoic. Nonsulfide ores show a wide range of morphological characteristics and textures. They occur as earthy masses, crystalline aggregates, and concretions in cavities. Breccia and replacement textures are also very common. The most important mineral phases are: smithsonite, Fe–smithsonite, Zn–dolomite, goethite, and Fe–Mn(hydr)oxides. Minor hemimorphite and hydrozincite have also been detected. Two distinct nonsulfide ore types occur: the predominant red galman and the rare white galman. In the white galman, Fe–smithsonite and Zn–dolomite are particularly abundant. This ore type is commonly considered as a peripheral hydrothermal alteration product related to the same fluids that precipitated both the OBD II–III and the sulfides. In contrast, a supergene origin is commonly assumed for the red galman. Evidence of the petrographic and mineralogical difference between white and red galman is also found in stable isotope data. Smithsonite from red galman shows a limited range of δ 13CVPDB values (−10.1 to −11.4‰), and δ 18OVSMOW values (25.3‰ to 28.5‰, mean 26.8 ± 0.3‰). The uniform and low carbon isotope values of red galman smithsonite are unusual for supergene carbonate-hosted deposits and indicate the predominance of a single organic carbon source. Smithsonite from white galman has a more variable, slightly more positive carbon isotope (−2.9‰ to −7.4‰), but broadly similar oxygen isotope composition (26.8‰ to 28.9‰). The relationship of the white galman ore with the hydrothermal system responsible for OBD II and sulfide generation is still uncertain. The most important paleoweathering events took place in both Lower and Upper Silesia during Late Cretaceous up to Paleogene and early Neogene time. During this period, several short-lasting emersions and intense weathering episodes facilitated the formation of sinkholes in the Triassic carbonate rocks and the oxidation of sulfide orebodies through percolating meteoric waters. These phenomena may have lasted until the Middle Miocene.  相似文献   
34.
The Concón Mafic Dike Swarm (CMDS) consists of basaltic to andesitic dikes emplaced into deformed Late Paleozoic granitoids during the development of the Jurassic arc of central Chile. The dikes are divided into an early group of thick dikes (5–12 m) and a late group of thin dikes (0.5–3 m). Two new amphibole 40Ar/39Ar dates obtained from undeformed and deformed dikes, constrain the age of emplacement and deformation of the CMDS between 163 and 157 Ma. Based on radiometric ages, field observations, AMS studies and petrographic data, we conclude that the emplacement of the CMDS was syntectonic with the Jurassic arc extension and associated with sinistral displacements along the NW-trending structures that host the CMDS. The common occurrence of already deformed and rotated xenoliths in the dikes indicates that deformation in the granitoids started previously.The early thick dikes and country rocks appear to have been remagnetized during the exhumation of deep-seated coastal rocks in the Early Cretaceous (around 100 Ma). The remanent magnetization in late thin dikes is mainly retained by small amounts of low-Ti magnetite at high temperature and pyrrhotite at low temperature. The magnetization in these dikes appears to be primary in origin. Paleomagnetic results from the thin dikes also indicate that the whole area was tilted  23° to the NNW during cooling of the CMDS.The NNW–SSE extension vectors deduced from the paleomagnetic data and internal fabric of dikes are different with respect to extension direction deduced for the Middle–Late Jurassic of northern Chile, pointing to major heterogeneities along the margin of the overriding plate during the Mesozoic or differences in the mechanisms driving extension during such period.  相似文献   
35.
Since the birth of X-ray astronomy, spectral, spatial and timing observation improved dramatically, procuring a wealth of information on the majority of the classes of the celestial sources. Polarimetry, instead, remained basically unprobed. X-ray polarimetry promises to provide additional information procuring two new observable quantities, the degree and the angle of polarization. Polarization from celestial X-ray sources may derive from emission mechanisms themselves such as cyclotron, synchrotron and non-thermal bremsstrahlung, from scattering in aspheric accreting plasmas, such as disks, blobs and columns and from the presence of extreme magnetic field by means of vacuum polarization and birefringence. Matter in strong gravity fields and Quantum Gravity effects can be studied by X-ray polarimetry, too. POLARIX is a mission dedicated to X-ray polarimetry. It exploits the polarimetric response of a Gas Pixel Detector, combined with position sensitivity, that, at the focus of a telescope, results in a huge increase of sensitivity. The heart of the detector is an Application-Specific Integrated Circuit (ASIC) chip with 105,600 pixels each one containing a full complete electronic chain to image the track produced by the photoelectron. Three Gas Pixel Detectors are coupled with three X-ray optics which are the heritage of JET-X mission. A filter wheel hosting calibration sources unpolarized and polarized is dedicated to each detector for periodic on-ground and in-flight calibration. POLARIX will measure time resolved X-ray polarization with an angular resolution of about 20 arcsec in a field of view of 15 × 15 arcmin and with an energy resolution of 20% at 6 keV. The Minimum Detectable Polarization is 12% for a source having a flux of 1 mCrab and 105 s of observing time. The satellite will be placed in an equatorial orbit of 505 km of altitude by a Vega launcher. The telemetry down-link station will be Malindi. The pointing of POLARIX satellite will be gyroless and it will perform a double pointing during the earth occultation of one source, so maximizing the scientific return. POLARIX data are for 75% open to the community while 25% + SVP (Science Verification Phase, 1 month of operation) is dedicated to a core program activity open to the contribution of associated scientists. The planned duration of the mission is one year plus three months of commissioning and SVP, suitable to perform most of the basic science within the reach of this instrument. A nice to have idea is to use the same existing mandrels to build two additional telescopes of iridium with carbon coating plus two more detectors. The effective area in this case would be almost doubled.  相似文献   
36.
37.
The far-UV spectrum of the T Tauri stars (TTSs) provides important clues about the structure of the stellar atmospheres, winds and accretion shocks. The IUE ( International Ultraviolet Explorer ) Final Archive contains the most complete data base for such studies. A new extraction system, the IUE Newly Extracted Spectra ( ines ), has been developed to overcome the disadvantages of the extraction system used in the IUE Final Archive, the Signal Weighted Extraction Technique ( swet ). We have compared the ines spectra of the whole sample of TTSs in the far-UV range (1200–2000 Å) with the swet low-resolution spectra available in the IUE Final Archive. Although in most of the cases there is a good agreement between both samples, an important enhancement of the ines line fluxes with respect to the swet line fluxes is reported for particular spectra. The line fluxes are enhanced by as much as a factor of ∼2.5 in some objects, which is significant for variability studies of TTSs because the variations of the UV lines are typically of this order. The emission-measure distributions built to study the atmospheres of these stars are based on the UV emission line fluxes, so the new system is susceptible to introduce changes in these models. Moreover, the non-linear enhancement of the ines line fluxes produces variations in diagnostic line ratios usually taken as temperature and density tracers in late-type stars. These line ratios can vary by as much as a factor of 3 when the ines data are compared with the swet , with the subsequent variation of the physical parameters derived from them.  相似文献   
38.
39.
Petrographic and geochemical data obtained on the Araguainha impact crater (Goiás/Mato Grosso States, Brazil) indicate the existence of several molten products that originated during impact‐induced congruent melting of an alkali‐granite exposed in the inner part of the central uplift of the structure. Although previous studies have described these melts to some extent, there is no detailed discussion on the petrographic and geochemical variability in the granite and its impactogenic derivatives, and therefore, little is known about the geochemical behavior and mobility of trace elements during its fusion in the central part of the Araguainha crater. This paper demonstrates that the preserved granitoid exposed in the core of the structure is a magnesium‐rich granite, similar to postcollisional, A‐type granites, also found in terrains outside the Araguainha crater, in the Brasília orogenic belt. The molten products are texturally distinct and different from the original rock, but have very similar geochemical composition, making it difficult to separate these lithotypes based on concentrations of major and minor elements. This also applies for trace and rare earth elements (REE), thus indicating a high degree of homogenization during impact‐induced congruent melting under high pressure and postshock temperature conditions. Petrographic observations, along with geochemical data, indicate that melting occurs selectively, where some of the elements are transported with the melt. Simultaneously, there is an effective dissolution of the rock (granite), which leads to entrainment of the most resistant solid phases (intact or partially molten minerals) into the melt. Minerals more resistant to melting, such as quartz and oxides, contribute substantially to a chemical balance between the preserved granite and the fusion products generated during the meteoritic impact.  相似文献   
40.
Scholars have long discussed the introduction and spread of iron metallurgy in different civilizations. The sporadic use of iron has been reported in the Eastern Mediterranean area from the late Neolithic period to the Bronze Age. Despite the rare existence of smelted iron, it is generally assumed that early iron objects were produced from meteoritic iron. Nevertheless, the methods of working the metal, its use, and diffusion are contentious issues compromised by lack of detailed analysis. Since its discovery in 1925, the meteoritic origin of the iron dagger blade from the sarcophagus of the ancient Egyptian King Tutankhamun (14th C. BCE) has been the subject of debate and previous analyses yielded controversial results. We show that the composition of the blade (Fe plus 10.8 wt% Ni and 0.58 wt% Co), accurately determined through portable x‐ray fluorescence spectrometry, strongly supports its meteoritic origin. In agreement with recent results of metallographic analysis of ancient iron artifacts from Gerzeh, our study confirms that ancient Egyptians attributed great value to meteoritic iron for the production of precious objects. Moreover, the high manufacturing quality of Tutankhamun's dagger blade, in comparison with other simple‐shaped meteoritic iron artifacts, suggests a significant mastery of ironworking in Tutankhamun's time.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号