首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2049篇
  免费   97篇
  国内免费   15篇
测绘学   57篇
大气科学   142篇
地球物理   534篇
地质学   802篇
海洋学   280篇
天文学   211篇
综合类   14篇
自然地理   121篇
  2023年   8篇
  2022年   22篇
  2021年   43篇
  2020年   45篇
  2019年   50篇
  2018年   85篇
  2017年   94篇
  2016年   111篇
  2015年   96篇
  2014年   98篇
  2013年   130篇
  2012年   113篇
  2011年   153篇
  2010年   124篇
  2009年   148篇
  2008年   121篇
  2007年   100篇
  2006年   83篇
  2005年   64篇
  2004年   87篇
  2003年   60篇
  2002年   42篇
  2001年   30篇
  2000年   25篇
  1999年   13篇
  1998年   23篇
  1997年   15篇
  1996年   13篇
  1995年   13篇
  1994年   13篇
  1993年   11篇
  1992年   10篇
  1991年   9篇
  1990年   5篇
  1989年   12篇
  1988年   3篇
  1987年   5篇
  1986年   10篇
  1985年   7篇
  1984年   7篇
  1983年   7篇
  1982年   7篇
  1981年   5篇
  1980年   3篇
  1979年   4篇
  1978年   4篇
  1975年   5篇
  1973年   4篇
  1965年   3篇
  1962年   2篇
排序方式: 共有2161条查询结果,搜索用时 15 毫秒
961.
Hydraulic head response to stream-stage variations can be used to explore the hydraulic properties of stream-aquifer systems at a relatively large scale. These stream-stage response tests, also called flooding tests, are typically interpreted using one- or two-dimensional models that assume flow perpendicular to the river. Therefore, they cannot be applied to systems that are both horizontally and vertically heterogeneous. In this work, we use the geostatistical inverse problem to jointly interpret data from stream-stage response and pumping tests. The latter tests provide flow data (which are needed to resolve aquifer diffusivity into transmissivity and storage coefficient) and may supply supplementary small-scale information. Here, we summarize the methodology for the design, execution, and joint numerical interpretation of these tests. Application to the Aznalcóllar case study allows us to demonstrate that the proposed methodology may help in responding to questions such as the continuity of aquitards, the role and continuity of highly permeable paleochannels, or the time evolution of stream-aquifer interaction. These results expand the applicability and scope of stream-stage response tests.  相似文献   
962.
By measuring a battery of basic physiological biomarkers and the concentration of SigmaDDT in adult female perch (Perca fluviatilis), an assumed aquatic pollution gradient was confirmed, with the city of Stockholm (Sweden) as a point source of anthropogenic substances. The investigation included an upstream gradient, westwards through Lake M?laren (46 km), and a downstream gradient, eastwards through the Stockholm archipelago (84 km). The results indicated a severe pollution situation in central Stockholm, with poor health status of the perch: retarded growth, increased frequency of sexually immature females, low gonadosomatic index, and disturbed visceral fat metabolism. SigmaDDT, measured as a pollution indicator, was 10-28 times higher than the background in perch from the Baltic Proper. Besides the main gradient other sources of pollution also influenced the response pattern of the measured biomarkers. In particular, there were strong indications of pollution coming from the Baltic Sea.  相似文献   
963.
It is known that most of the craters on the surface of the Moon were created by the collision of minor bodies of the Solar System. Main Belt Asteroids, which can approach the terrestrial planets as a consequence of different types of resonance, are actually the main responsible for this phenomenon. Our aim is to investigate the impact distributions on the lunar surface that low-energy dynamics can provide. As a first approximation, we exploit the hyberbolic invariant manifolds associated with the central invariant manifold around the equilibrium point L 2 of the Earth–Moon system within the framework of the Circular Restricted Three-Body Problem. Taking transit trajectories at several energy levels, we look for orbits intersecting the surface of the Moon and we attempt to define a relationship between longitude and latitude of arrival and lunar craters density. Then, we add the gravitational effect of the Sun by considering the Bicircular Restricted Four-Body Problem. In the former case, as main outcome, we observe a more relevant bombardment at the apex of the lunar surface, and a percentage of impact which is almost constant and whose value depends on the assumed Earth–Moon distance dEM. In the latter, it seems that the Earth–Moon and Earth–Moon–Sun relative distances and the initial phase of the Sun θ 0 play a crucial role on the impact distribution. The leading side focusing becomes more and more evident as dEM decreases and there seems to exist values of θ 0 more favorable to produce impacts with the Moon. Moreover, the presence of the Sun makes some trajectories to collide with the Earth. The corresponding quantity floats between 1 and 5 percent. As further exploration, we assume an uniform density of impact on the lunar surface, looking for the regions in the Earth–Moon neighbourhood these colliding trajectories have to come from. It turns out that low-energy ejecta originated from high-energy impacts are also responsible of the phenomenon we are considering.  相似文献   
964.
Kamil is a 45 m diameter impact crater identified in 2008 in southern Egypt. It was generated by the hypervelocity impact of the Gebel Kamil iron meteorite on a sedimentary target, namely layered sandstones with subhorizontal bedding. We have carried out a petrographic study of samples from the crater wall and ejecta deposits collected during our first geophysical campaign (February 2010) in order to investigate shock effects recorded in these rocks. Ejecta samples reveal a wide range of shock features common in quartz‐rich target rocks. They have been divided into two categories, as a function of their abundance at thin section scale: (1) pervasive shock features (the most abundant), including fracturing, planar deformation features, and impact melt lapilli and bombs, and (2) localized shock features (the least abundant) including high‐pressure phases and localized impact melting in the form of intergranular melt, melt veins, and melt films in shatter cones. In particular, Kamil crater is the smallest impact crater where shatter cones, coesite, stishovite, diamond, and melt veins have been reported. Based on experimental calibrations reported in the literature, pervasive shock features suggest that the maximum shock pressure was between 30 and 60 GPa. Using the planar impact approximation, we calculate a vertical component of the impact velocity of at least 3.5 km s?1. The wide range of shock features and their freshness make Kamil a natural laboratory for studying impact cratering and shock deformation processes in small impact structures.  相似文献   
965.
966.
222Rn was used to assess river–groundwater interactions within Castel di Sangro alluvial aquifer (Italy). The effectiveness of results obtained through this indicator was verified by also analyzing δ18O, major ions and temperature in both surface and groundwater, and carrying out piezometric head monitoring and discharge measurements. Hydrogeological investigations suggested that the river infiltrates into the aquifer in the south-eastern aquifer portion, while groundwater discharges into the river in the north-eastern portion. The latter phenomenon is supported by 222Rn data. Nevertheless, flow-through conditions cause the modelled discharge along this river reach, estimated by 222Rn data in a degassing-corrected two-component mixing model, to be greater than the measured discharge. Concerning river infiltration into the aquifer, δ18O, major ions and temperature data show that the river contribution is negligible in terms of aquifer recharge. Thus, the observed increase in 222Rn concentration in that portion of the aquifer is due to the enrichment process caused by infiltration of rainwater (222Rn free) which flows from the local divide area. Hence, in the study site, the use of only 222Rn to predict river–groundwater interactions causes some estimation inaccuracies and it must be coupled with other hydrochemical and hydrogeological parameters to gain a thorough understanding of such interactions.  相似文献   
967.
The need to develop powerful tools to detect exposure and effects of POPs and emerging contaminants in Mediterranean cetaceans led us to develop a suite of sensitive non-lethal biomarkers in integument biopsies of free-ranging animals. In order to propose induction of CYP1A1 and CYP2B, detected by Western blot analysis, as biomarkers of exposure to OCs, PAHs and PBDEs, a three-phase experimental protocol (in vitro experiments, calibration experiments and field applications) was followed using fibroblast cell cultures and biopsies of Mediterranean Stenella coeruleoalba and Tursiops truncatus. This methodology was confirmed to be sensitive and stable in comparison to previous methods used to detect CYP1A1 in biopsies, enabling analysis of several inducible proteins in non-lethal samples and analysis of material from stranded animals.  相似文献   
968.
Algal blooms have been documented along the west and east coasts of India. A review of bloom occurrences in Indian waters from 1908 to 2009 points out that a total of 101 cases have been reported. A comparison of the bloom cases reported before and after the 1950s reveals that there is an increase in the number of bloom occurrences. The reports of algal blooms indicate their predominance along the west coast of India especially the southern part. Majority of the blooms reported along the west coast of India are caused by dinoflagellates, whereas diatom blooms prevail along the east coast. There have been 39 causative species responsible for blooms, of which Noctiluca scintillans and Trichodesmium erythraeum are the most common. Reporting of massive fish mortality in Indian waters has been associated with the blooming of Cochlodinium polykrikoides, Karenia brevis, Karenia mikimotoi, N. scintillans, T. erythraeum, Trichodesmium thiebautii and Chattonella marina. Most of the blooms occurred during withdrawal of the south-west monsoon and pre-monsoon period. In Indian waters, this process is mainly influenced by seasonal upwelling and monsoonal forcing that causes high riverine discharge resulting in nutrient-enriched waters that provides a competitive edge for blooming of phytoplankton species.  相似文献   
969.
The vent mussel Bathymodiolus azoricus is the dominant member of the Northern Mid‐Atlantic Ridge (MAR) hydrothermal megafauna, and lives in an environment characterized by temporal and spatial variations in the levels of heavy metals, methane and hydrogen sulphide, substances which are known to increase reactive oxygen species levels in the tissues of exposed organisms. To evaluate the effects of two contrasting hydrothermal environments on the antioxidant defence system of this vent mussel species, a 2‐week transplant experiment was carried out involving mussels collected from the relatively deep (2300 m), and chemical rich, Rainbow vent field. These were transplanted to the shallower (1700 m), and relatively less toxic, Lucky Strike vent field. To achieve this objective, levels of superoxide dismutase, catalase (CAT), total glutathione peroxidase (GPx), selenium‐dependent glutathione peroxidase and lipid peroxidation (LPO) were measured in the gills and mantle tissues of resident and transplant mussels before and after the transplant experiment. With the exception of CAT, the gills of the transplanted mussels had significantly higher antioxidant enzyme activity compared with the basal levels in the donor (Rainbow) and recipient (Lucky Strike) populations; whereas the antioxidant enzyme levels in the mantle tissues of the transplants reflected the baseline levels of activity in the native Lucky Strike mussels after 2 weeks. In contrast, LPO levels were significantly higher in both tissue types in the transplants than in either the source or the recipient populations, which suggested a response to hydrostatic pressure change (note, the transplant animals were brought to the surface for transportation between the two vent fields). The fact that the Rainbow mussels survived the transplant experience indicates that B. azoricus has a very robust constitution, which enables it to cope behaviourally, physiologically and genetically with the extreme conditions found in its naturally contaminated deep‐sea environment.  相似文献   
970.
Aeolian sand sea accumulations can serve as valuable archives of climate change in continental environments. The Wahiba Sand Sea is situated at the northern margin of the area presently affected by Indian Summer Monsoon Circulation and it records environmental changes associated with this major climatic boundary over the last 160 000 years. The internal stratigraphy and evolution of the sand sea is investigated using a combination of outcrop, borehole, seismic and luminescence data. Proximity to the Indian Ocean means that the sand sea succession shows the influence of sea level changes on the sedimentary architecture and composition of the dune deposits. During the last two glacial periods, low global sea level was associated with a high input of bioclastic grains, reflecting the significance of subaerially exposed shelf areas as one of the main sources of aeolian sediment. The onset of aeolian sediment transport and deposition was related to the breakdown of stabilizing vegetation during arid periods that equate with sea level lowstands. The preservation of aeolian sediments by the formation of supersurfaces and associated palaeosoils took place during times of increased wetness and elevated groundwater tables. This interplay of constructive and destructive periods greatly influenced the sedimentary architecture. Oscillations of wet and dry periods between 160 000 and 130 000 years and 120 000–105 000 years ago are attributed to the evolution of a wet aeolian system. Younger periods of aeolian deposition around and after the last glacial maximum were characterized by dry aeolian conditions. No soil horizons developed during these times.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号