首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   287篇
  免费   10篇
  国内免费   1篇
测绘学   8篇
大气科学   18篇
地球物理   71篇
地质学   84篇
海洋学   7篇
天文学   97篇
自然地理   13篇
  2023年   1篇
  2022年   1篇
  2021年   4篇
  2020年   5篇
  2019年   5篇
  2018年   8篇
  2017年   7篇
  2016年   11篇
  2015年   16篇
  2014年   6篇
  2013年   17篇
  2012年   8篇
  2011年   16篇
  2010年   14篇
  2009年   25篇
  2008年   11篇
  2007年   15篇
  2006年   15篇
  2005年   16篇
  2004年   10篇
  2003年   12篇
  2002年   6篇
  2001年   6篇
  2000年   5篇
  1999年   6篇
  1998年   11篇
  1997年   2篇
  1996年   4篇
  1995年   2篇
  1994年   4篇
  1993年   1篇
  1992年   2篇
  1991年   3篇
  1990年   2篇
  1989年   2篇
  1988年   1篇
  1987年   3篇
  1986年   2篇
  1984年   4篇
  1983年   1篇
  1982年   2篇
  1980年   1篇
  1976年   1篇
  1973年   1篇
  1971年   2篇
  1960年   1篇
排序方式: 共有298条查询结果,搜索用时 0 毫秒
131.
Frequency analysis of the Sumatra-Andaman earthquake of 2004, one of the most significant and best-recorded earthquakes, is based on spectral seismograms obtained from their broadband seismograms. The Sumatra-Andaman earthquake is found to have a wide-range frequency content of P-wave radiation during the rupturing process. On the basis of stacking spectral seismograms we distinguished four time events of the rupturing process of a total length of about 540 s. The frequency, f max, is the highest for the first event (0.163 Hz in time interval 0–88 s), lowest for the second — which is the strongest (0.075 Hz in time interval 88–204 s). For third and fourth events frequencies are similar (0.089 and 0.082 Hz in time intervals 204–452 and 452–537 s, respectively). The frequency also shows an azimuthal dependence (±0.02 Hz). Azimuths for which the frequency, f max, has maximum and minimum values are 203–222° and 23–42°, respectively. These observations are discussed in relation to previously published papers on this topic.  相似文献   
132.
We follow our former considerations on rotational processes and emission of rotation and shear-twist waves as occurring in earthquake source zones. A concise presentation of the motion and constitutive relations is given for each type of the four fundamental point deformations: displacements, rotations, point stretch/squeeze, and string-string point deformations (shear nuclei).  相似文献   
133.
134.
Wells designated as groundwater under the direct influence (GUDI) of surface water have caused an ongoing boil-water advisory afflicting the island of Tutuila, American Samoa for almost a decade. Regulatory testing at these wells found turbidity and indicator bacteria spikes correlated with heavy rainfall events. However, the mechanism of this contamination has, until now, remained unknown. Surface water may reach wells through improperly sealed well casings, or through the aquifer matrix itself. In this study, three independent surface water tracers, turbidity, indicator bacteria, and water isotopes were used to assess recharge timing and determine contamination mechanisms. Results from each method were reasonably consistent, revealing average GUDI well breakthrough times of 37 ± 21 h for turbidity, 18 to 63 h for bacteria, and 1 to 5 days for water isotopes. These times match well with estimated subsurface flow rates through highly permeable aquifer materials. In contrast, where one well casing was found to be compromised, turbidity breakthrough was observed at 3 to 4 h. These results support local management decisions and show repairing or replacing wells will likely result in continued GUDI contamination. Additionally, differences in observed rainfall response for each tracer provide insight into the recharge dynamics and subsurface flow characteristics of this and other highly conductive young-basaltic aquifers.  相似文献   
135.
In the middle Miocene Badenian gypsum basin of the Carpathian Foredeep, west Ukraine, three main zones of gypsum development occur in the peripheral parts of the basin. Zone I consists entirely of stromatolitic gypsum formed in a nearshore zone. Zone II is located more basinward and is characterized by stromatolitic gypsum in the lower part of the section, overlain by a sabre gypsum unit. Zone III occurs in still more basinward areas and is characterized by giant gypsum intergrowths (or secondary nodular gypsum pseudomorphs of these) in the lowermost part, overlain by stromatolitic gypsum, sabre gypsum and then by clastic gypsum units. Correlation between these facies and zones has been achieved using lithological marker beds and surfaces. Of particular importance for correlation is a characteristic marker bed (usually 20–40 cm thick) of cryptocrystalline massive gypsum occurring in zones II and III. The marker was not distinguished in zone I, possibly because this bed is older than the entire gypsum section of that zone. These new results strongly suggest that the deposition of giant gypsum intergrowth facies and stromatolitic gypsum facies was coeval. In some sections of zones I and II, limestone intercalations have been recorded within the upper part of the gypsum sections. Considerable scatter of the δ18O and δ13C values of these limestones indicates variable diagenetic overprints of marine carbonates, but a marine provenance of the limestones is confirmed by microfacies analysis. Some of the limestones are coeval with an intercalation of gypsarenitic, mostly laminated gypsum occurring in the sabre gypsum unit of zones II and III. Badenian gypsum formed in extremely shallow‐water to subaerial environments on broad, very low relief areas of negligible brine depth, which could be affected by rapid transgressions. Stable isotope (δ34S, δ18O) studies of the gypsum demonstrate that the sulphate was of sea‐water origin or was derived from dissolution of Miocene marine evaporites. Investigations of individual inclusions in the gypsum indicate decreased water salinity when compared with modern marine‐derived, calcium sulphate‐saturated water. Groundwater influences are indicated by high calcium sulphate contents of the brines in the evaporite basin. The chemical composition of Badenian waters was thus a mixture of relic sea water (depleted in NaCl), groundwater (enriched in calcium sulphate) and surface run‐off.  相似文献   
136.
137.
The goal of the research was to demonstrate the impact of thin porous interfacial transition zones (ITZs) between aggregates and cement matrix on fluid flow in unsaturated concrete caused by hydraulic/capillary pressure. To demonstrate this impact, a novel coupled approach to simulate the two-phase (water and moist air) flow of hydraulically and capillary-driven fluid in unsaturated concrete was developed. By merging the discrete element method (DEM) with computational fluid dynamics (CFD) under isothermal settings, the process was numerically studied at the meso-scale in two-dimensional conditions. A flow network was used to describe fluid behaviour in a continuous domain between particles. Small concrete specimens of a simplified particle mesostructure were subjected to fully coupled hydro-mechanical simulation tests. A simple uniaxial compression test was used to calibrate the pure DEM represented by bonded spheres, while a permeability and sorptivity test for an assembly of spheres was used to calibrate the pure CFD. For simplified specimens of the pure cement matrix, cement matrix with aggregate, and cement matrix with aggregate and ITZ of a given thickness, DEM/CFD simulations were performed sequentially. The numerical results of permeability and sorptivity were directly compared to the data found in the literature. A satisfactory agreement was achieved. Porous ITZs in concrete were found to reduce sorption by slowing the capillary-driven fluid flow, and to speed the full saturation of pores when sufficiently high hydraulic water pressures were dominant.  相似文献   
138.
The Lake Izabal Basin in Guatemala is a major pull-apart basin along the sinistral Polochic Fault, which is part of the North American and Caribbean plate boundary. The basin infill contains information about the tectonic and sedimentological processes that have imparted a significant control on its sedimentary section. The inception of the basin has been linked to the relative importance of the Polochic Fault in the tectonic history of the plate boundary; yet, its sedimentological record and its inception age have been poorly documented. This study integrates diverse datasets, including industry reports, well logs and reports, well cuttings, vintage seismic data, outcrop observations and geochronological data to constrain the initial infill and age of inception of the basin. The integrated data show that during the Oligocene–Miocene, a marine carbonate platform was established in the region which was later uplifted and eroded in the early Miocene. The fluvial–lacustrine deposits above this carbonate platform are part of the initial infill of the basin and are constrained with zircon weighted-mean 206Pb/238U ages of 12.060 ± 0.008 from a volcanic tuff ~30 m above the unconformity. Sandstone, mudstone and coal dominate the interval from 12 to 4 Ma, with an increase in conglomerate correlating to the uplift of the Mico Mountains and San Gil Hill at 4 Ma. Fault switch activity between the Polochic and Motagua faults has been hypothesized to explain total offset along the Polochic Fault and the geologic and geodetic slip rates along the two faults. The 12 Ma age determined for the initial infill of the basin confirms this hypothesis. Consequently, our study confirms that at ~12 Ma the Polochic Fault served as the main fault of the plate boundary with inferred slip rates ranging from 13 to 21 mm/yr with a strong possibility that the Polochic Fault was, at some point between 15 Ma and 7 Ma, the only active fault of the plate boundary. The results of this study show that tectonic records preserved in sediments of strike-slip basins improve the understanding of the relative significance of individual faults and the implications with respect to strain partitioning throughout its tectonic history.  相似文献   
139.

The seasonality in cave CO2 levels was studied based on (1) a new data set from the dynamically ventilated Comblain-au-Pont Cave (Dinant Karst Basin, Belgium), (2) archive data from Moravian Karst caves, and (3) published data from caves worldwide. A simplified dynamic model was proposed for testing the effect of all conceivable CO2 fluxes on cave CO2 levels. Considering generally accepted fluxes, i.e., the direct diffusive flux from soils/epikarst, the indirect flux derived from dripwater degassing, and the input/output fluxes linked to cave ventilation, gives the cave CO2 level maxima of 1.9 × 10−2 mol m−3 (i.e., ∼ 440 ppmv), which only slightly exceed external values. This indicates that an additional input CO2 flux is necessary for reaching usual cave CO2 level maxima. The modeling indicates that the additional flux could be a convective advective CO2 flux from soil/epikarst driven by airflow (cave ventilation) and enhanced soil/epikarstic CO2 concentrations. Such flux reaching up to 170 mol s−1 is capable of providing the cave CO2 level maxima up to 3 × 10−2 mol m−3 (70,000 ppmv). This value corresponds to the maxima known from caves worldwide. Based on cave geometry, three types of dynamic caves were distinguished: (1) the caves with the advective CO2 flux from soil/epikarst at downward airflow ventilation mode, (2) the caves with the advective soil/epikarstic flux at upward airflow ventilation mode, and (3) the caves without any soil/epikarstic advective flux. In addition to CO2 seasonality, the model explains both the short-term and seasonal variations in δ13C in cave air CO2.

  相似文献   
140.
A regional isotopic study of Pb and S in hydrothermal galenas and U–Pb and S in potential source rocks was carried out for part of Moravia, Czech Republic. Two major generations of veins, (syn-) Variscan and post-Variscan, are defined based on the Pb-isotope system together with structural constraints (local structures and regional trends). The Pb-isotopic compositions of galena plot in two distinct populations with outliers in 206Pb/204Pb–207Pb/204Pb space. Galena from veins hosted in greywackes provides a cluster with the lowest Pb–Pb ratios: 206Pb/204Pb = 18.15–18.27, 207Pb/204Pb = 15.59–15.61, 208Pb/204Pb = 38.11–38.23. Those hosted in both limestones and greywackes provide the second cluster: 206Pb/204Pb = 18.37–18.44, 207Pb/204Pb = 15.60–15.63, 208Pb/204Pb = 38.14–38.32. These clusters suggest model Pb ages as Early Carboniferous and Triassic–Jurassic, the latter associated with MVT-like deposits. Two samples from veins hosted in Proterozoic rocks lie outside the two clusters: in metagranitoid (206Pb/204Pb = 18.55, 207Pb/204Pb = 15.64, 208Pb/204Pb = 38.29) and in orthogneiss (206Pb/204Pb = 18.79, 207Pb/204Pb = 15.73, 208Pb/204Pb = 38.54). The results from these two samples suggest an interaction of mineralizing fluids with the radiogenic Pb-rich source (basement?). The values of δ34S suggest the Paleozoic host rocks (mostly ?6.7 to +5.2‰ CDT) as the source of S for hydrothermal sulfides (mostly ?4.8 to +2.5‰ CDT). U–Pb data and Pb isotope evolutionary curves indicate that Late Devonian and Early Carboniferous sediments, especially siliciclastics, are the general dominant contributor of Pb for galena mineralization developed in sedimentary rocks. Plumbotectonic mixing occurred, it is deduced, only between the lower and the upper crust (the latter involving Proterozoic basement containing heterogeneous radiogenic Pb), without any significant input from the mantle. It is concluded that in the Moravo–Silesian and Rhenohercynian zones (including proximal districts in Poland) lead and sulfur have been mobilized from the adjacent rocks during multiple hydrothermal events in processes that are remarkably comparable in timing, geochemistry of fluids and nature of sources.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号