首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   264篇
  免费   17篇
  国内免费   1篇
测绘学   8篇
大气科学   28篇
地球物理   61篇
地质学   94篇
海洋学   27篇
天文学   39篇
综合类   2篇
自然地理   23篇
  2022年   2篇
  2021年   6篇
  2020年   7篇
  2019年   10篇
  2018年   11篇
  2017年   12篇
  2016年   6篇
  2015年   12篇
  2014年   8篇
  2013年   9篇
  2012年   13篇
  2011年   13篇
  2010年   10篇
  2009年   29篇
  2008年   17篇
  2007年   13篇
  2006年   14篇
  2005年   11篇
  2004年   13篇
  2003年   11篇
  2002年   8篇
  2001年   2篇
  2000年   4篇
  1999年   1篇
  1998年   3篇
  1997年   1篇
  1996年   3篇
  1995年   2篇
  1994年   1篇
  1993年   4篇
  1992年   1篇
  1991年   1篇
  1989年   3篇
  1987年   1篇
  1985年   1篇
  1983年   1篇
  1982年   2篇
  1980年   3篇
  1978年   2篇
  1977年   2篇
  1976年   3篇
  1975年   2篇
  1974年   1篇
  1973年   1篇
  1970年   2篇
排序方式: 共有282条查询结果,搜索用时 328 毫秒
21.
It is widely recognised that the acquisition of high‐resolution palaeoclimate records from southern mid‐latitude sites is essential for establishing a coherent picture of inter‐hemispheric climate change and for better understanding of the role of Antarctic climate dynamics in the global climate system. New Zealand is considered to be a sensitive monitor of climate change because it is one of a few sizeable landmasses in the Southern Hemisphere westerly circulation zone, a critical transition zone between subtropical and Antarctic influences. New Zealand has mountainous axial ranges that amplify the climate signals and, consequently, the environmental gradients are highly sensitive to subtle changes in atmospheric and oceanic conditions. Since 1995, INTIMATE has, through a series of international workshops, sought ways to improve procedures for establishing the precise ages of climate events, and to correlate them with high precision, for the last 30 000 calendar years. The NZ‐INTIMATE project commenced in late 2003, and has involved virtually the entire New Zealand palaeoclimate community. Its aim is to develop an event stratigraphy for the New Zealand region over the past 30 000 years, and to reconcile these events against the established climatostratigraphy of the last glacial cycle which has largely been developed from Northern Hemisphere records (e.g. Last Glacial Maximum (LGM), Termination I, Younger Dryas). An initial outcome of NZ‐INTIMATE has been the identification of a series of well‐dated, high‐resolution onshore and offshore proxy records from a variety of latitudes and elevations on a common calendar timescale from 30 000 cal. yr BP to the present day. High‐resolution records for the last glacial coldest period (LGCP) (including the LGM sensu stricto) and last glacial–interglacial transition (LGIT) from Auckland maars, Kaipo and Otamangakau wetlands on eastern and central North Island, marine core MD97‐2121 east of southern North Island, speleothems on northwest South Island, Okarito wetland on southwestern South Island, are presented. Discontinuous (fragmentary) records comprising compilations of glacial sequences, fluvial sequences, loess accumulation, and aeolian quartz accumulation in an andesitic terrain are described. Comparisons with ice‐core records from Antarctica (EPICA Dome C) and Greenland (GISP2) are discussed. A major advantage immediately evident from these records apart from the speleothem record, is that they are linked precisely by one or more tephra layers. Based on these New Zealand terrestrial and marine records, a reasonably coherent, regionally applicable, sequence of climatically linked stratigraphic events over the past 30 000 cal. yr is emerging. Three major climate events are recognised: (1) LGCP beginning at ca. 28 000 cal. yr BP, ending at Termination I, ca. 18 000 cal. yr BP, and including a warmer and more variable phase between ca. 27 000 and 21 000 cal. yr BP, (2) LGIT between ca. 18 000 and 11 600 cal. yr BP, including a Lateglacial warm period from ca. 14 800 to 13 500 cal. yr BP and a Lateglacial climate reversal between ca. 13 500 and 11 600 cal. yr BP, and (3) Holocene interglacial conditions, with two phases of greatest warmth between ca. 11 600 and 10 800 cal. yr BP and from ca. 6 800 to 6 500 cal. yr BP. Some key boundaries coincide with volcanic tephras. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
22.
23.
Atmospheric contributions of methane from Arctic wetlands during the Holocene are dynamic and linked to climate oscillations. However, long-term records linking climate variability to methane availability in Arctic wetlands are lacking. We present a multi-proxy ~12,000?year paleoecological reconstruction of intermittent methane availability from a radiocarbon-dated sediment core (LQ-West) taken from a shallow tundra lake (Qalluuraq Lake) in Arctic Alaska. Specifically, stable carbon isotopic values of photosynthetic biomarkers and methane are utilized to estimate the proportional contribution of methane-derived carbon to lake-sediment-preserved benthic (chironomids) and pelagic (cladocerans) components over the last ~12,000?years. These results were compared to temperature, hydrologic, and habitat reconstructions from the same site using chironomid assemblage data, oxygen isotopes of chironomid head capsules, and radiocarbon ages of plant macrofossils. Cladoceran ephippia from ~4,000?cal?year BP sediments have ??13C values that range from ~?39 to ?31??, suggesting peak methane carbon assimilation at that time. These low ??13C values coincide with an apparent decrease in effective moisture and development of a wetland that included Sphagnum subsecundum. Incorporation of methane-derived carbon by chironomids and cladocerans decreased from ~2,500 to 1,500?cal?year BP, coinciding with a temperature decrease. Live-collected chironomids with a radiocarbon age of 1,640?cal?year BP, and fossil chironomids from 1,500?cal?year BP in the core illustrate that ??old?? carbon has also contributed to the development of the aquatic ecosystem since ~1,500?cal?year BP. The relatively low ??13C values of aquatic invertebrates (as low as ?40.5??) provide evidence of methane incorporation by lake invertebrates, and suggest intermittent climate-linked methane release from the lake throughout the Holocene.  相似文献   
24.
During the last interglacial insolation maximum (Eemian, MIS 5e) the tropical and subtropical African hydrological cycle was enhanced during boreal summer months. The climate anomalies are examined with a General Circulation Model (ECHAM4) that is equipped with a module for the direct simulation of 18O and deuterium (H 2 18 O and HDO, respectively) in all components of the hydrological cycle. A mechanism is proposed to explain the physical processes that lead to the modelled anomalies. Differential surface heating due to anomalies in orbital insolation forcing induce a zonal flow which results in enhanced moisture advection and precipitation. Increased cloud cover reduces incoming short wave radiation and induces a cooling between 10°N and 20°N. The isotopic composition of rainfall at these latitudes is therefore significantly altered. Increased amount of precipitation and stronger advection of moisture from the Atlantic result in isotopically more depleted rainfall in the Eemian East African subtropics compared to pre-industrial climate. The East–West gradient of the isotopic rainfall composition reverses in the Eemian simulation towards depleted values in the east, compared to more depleted western African rainfall in the pre-industrial simulation. The modelled re-distribution of δ18O and δD is the result of a change in the forcing of the zonal flow anomaly. We conclude that the orbitally induced forcing for African monsoon maxima extends further eastward over the continent and leaves a distinct isotopic signal that can be tested against proxy archives, such as lake sediment cores from the Ethiopian region.  相似文献   
25.
We show that between 1996 and 2006, the area circumscribed by the high-speed collar of the Great Red Spot (GRS) shrunk by 15%, while the peak velocities within its collar remained constant. This shrinkage indicates a dynamical change in the GRS because the region circumscribed by the collar is nearly coincident with the location of the potential vorticity anomaly of the GRS. It was previously observed that the area of the clouds associated with the GRS has been shrinking. However, the cloud cover of the GRS is not coincident with the location of its potential vorticity anomaly or any other of its known dynamical features. We show that the peak velocities of the Oval BA were nearly the same in 2000, when the Oval was white, and in 2006, when it was red, as were all of the other features of the two velocities fields. To measure temporal changes in the GRS and Oval, we extracted velocities from images taken with Galileo, Cassini, and the Hubble Space Telescope using a new iterative method called Advection Corrected Correlation Image Velocimetry (ACCIV). ACCIV finds correlations over image pairs with 10-h time separations when other automated velocity-extraction methods are limited to time separations of 2 h or less. Typically, ACCIV velocities produced from images separated by 10 h had errors that are 3-6 times smaller than similar velocities extracted from images separated by 2 h or less. ACCIV produces velocity fields containing hundreds of thousands of independent correlation vectors (tie-points). Dense velocity fields are needed to locate the loci of peak velocities and other features.  相似文献   
26.
Marcus Power 《Geoforum》2009,40(1):14-24
One important (though often neglected) part of the ‘development business’ committed to principles of partnership is the Commonwealth, a voluntary association of 54 independent countries, almost all of which were formerly under British rule. This paper focuses on the Commonwealth’s contemporary sense of ‘responsibility’ for shaping African development through ‘partnership’ and by promoting ‘good governance’ and examines the particular example of Mozambique, which joined the Commonwealth in 1995. In exploring exactly what membership of this post-colonial ‘family’ has meant for Mozambique the paper explores the neocolonial paternalism and sense of trusteeship that the Commonwealth has articulated in its often very apolitical vision of African development which seems to lock the continent into a permanent stage of tutelage and to repetitively reduce Africa to a set of core deficiencies for which externally generated ‘solutions’ must be devised. More generally, the paper also examines the wider context of the Commonwealth’s involvement in Africa by looking at the connections it has made to British industry, British charities and the British Department for International Development (DFID). The paper concludes with an assessment of the ‘showcase’ potential of Mozambique and its importance to Commonwealth and DFID narrations of an African ‘success’ story of peace, stability and growth since the end of the country’s devastating civil war in 1992.  相似文献   
27.
Latest Pleistocene and Holocene glacier variations in the European Alps   总被引:1,自引:0,他引:1  
In the Alps, climatic conditions reflected in glacier and rock glacier activity in the earliest Holocene show a strong affinity to conditions in the latest Pleistocene (Younger Dryas). Glacier advances in the Alps related to Younger Dryas cooling led to the deposition of Egesen stadial moraines. Egesen stadial moraines can be divided into three or in some cases even more phases (sub-stadials). Moraines of the earliest and most extended advance, the Egesen maximum, stabilized at 12.2 ± 1.0 ka based on 10Be exposure dating at the Schönferwall (Tyrol, Austria) and the Julier Pass-outer moraine (Switzerland). Final stabilization of moraines at the end of the Egesen stadial was at 11.3 ± 0.9 ka as shown by 10Be data from four sites across the Alps. From west to east the sites are Piano del Praiet (northwestern Italy), Grosser Aletschgletscher (central Switzerland), Julier Pass-inner moraine (eastern Switzerland), and Val Viola (northeastern Italy). There is excellent agreement of the 10Be ages from the four sites. In the earliest Holocene, glaciers in the northernmost mountain ranges advanced at around 10.8 ± 1.1 ka as shown by 10Be data from the Kartell site (northern Tyrol, Austria). In more sheltered, drier regions rock glacier activity dominated as shown, for example, at Julier Pass and Larstig valley (Tyrol, Austria). New 10Be dates presented here for two rock glaciers in Larstig valley indicate final stabilization no later than 10.5 ± 0.8 ka. Based on this data, we conclude the earliest Holocene (between 11.6 and about 10.5 ka) was still strongly affected by the cold climatic conditions of the Younger Dryas and the Preboreal oscillation, with the intervening warming phase having had the effect of rapid downwasting of Egesen glaciers. At or slightly before 10.5 ka rapid shrinkage of glaciers to a size smaller than their late 20th century size reflects markedly warmer and possibly also drier climate. Between about 10.5 ka and 3.3 ka conditions in the Alps were not conducive to significant glacier expansion except possibly during rare brief intervals. Past tree-line data from Kaunertal (Tyrol, Austria) in concert with radiocarbon and dendrochronologically dated wood fragments found recently in the glacier forefields in both the Swiss and Austrian Alps points to long periods during the Holocene when glaciers were smaller than they were during the late 20th century. Equilibrium line altitudes (ELA) were about 200 m higher than they are today and about 300 m higher in comparison to Little Ice Age (LIA) ELAs. The Larstig rock glacier site we dated with 10Be is the type area for a postulated mid-Holocene cold period called the Larstig oscillation (presumed age about 7.0 ka). Our data point to final stabilization of those rock glaciers in the earliest Holocene and not in the middle Holocene. The combined data indicate there was no time window in the middle Holocene long enough for rock glaciers of the size and at the elevation of the Larstig site to have formed. During the short infrequent cold oscillations between 10.5 and 3.3 ka small glaciers (less than several km2) may have advanced to close to their LIA dimensions. Overall, the cold periods were just too short for large glaciers to advance. After 3.3 ka, climate conditions became generally colder and warm periods were brief and less frequent. Large glaciers (for example Grosser Aletschgletscher) advanced markedly at 3.0–2.6 ka, around 600 AD and during the LIA. Glaciers in the Alps attained their LIA maximum extents in the 14th, 17th, and 19th centuries, with most reaching their greatest LIA extent in the final 1850/1860 AD advance.  相似文献   
28.
In this study, we use isochron‐burial dating to date the Swiss Deckenschotter, the oldest Quaternary deposits of the northern Alpine Foreland. Concentrations of cosmogenic 10Be and 26Al in individual clasts from a single stratigraphic horizon can be used to calculate an isochron‐burial age based on an assumed initial ratio and the measured 26Al/10Be ratio. We suggest that, owing to deep and repeated glacial erosion, the initial isochron ratio of glacial landscapes at the time of burial varies between 6.75 and 8.4. Analysis of 22 clasts of different lithology, shape, and size from one 0.5 m thick gravel bed at Siglistorf (Canton Aargau) indicates low nuclide concentrations: <20 000 10Be atoms/g and <150 000 26Al atoms/g. Using an 26Al/10Be ratio of 7.6 (arithmetical mean of 6.75 and 8.4), we calculate a mean isochron‐burial age of 1.5 ± 0.2 Ma. This age points to an average bedrock incision rate between 0.13 and 0.17 mm/a. Age data from the Irchel, Stadlerberg, and Siglistorf sites show that the Higher Swiss Deckenschotter was deposited between 2.5 and 1.3 Ma. Our results indicate that isochron‐burial dating can be successfully applied to glaciofluvial sediments despite very low cosmogenic nuclide concentrations. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
29.
Soils in mountainous areas are often polygenetic, developed in slope covers that relate to glacial and periglacial activities of the Pleistocene and Holocene and reflect climatic variations. Landscape development during the Holocene may have been influenced by erosion/solifluction that often started after the Holocene climatic optimum. To trace back soil evolution and its timing, we applied a multi‐methodological approach. This approach helped us to outline scenario of soil transformation. According to our results, some aeolian input must have occurred in the late Pleistocene. During that time and the early Holocene, the soils most likely had features of Cryosols or Leptosols. Physico‐chemical and mineralogical analyses have indicated that the material was denudated (between late Boreal to the Atlantic) from the ridge and upper‐slope positions forming a colluvium at mid‐slope positions. Later, during the Sub‐Boreal, mass wasting of the remains of silt material deposited at the end of the Pleistocene age on the ridge top seems to have occurred. In addition, the cool and moist conditions caused the deposition of a colluvium at the lower‐slope positions. The next phase was characterized by the transformation of Leptosols/Cambisols into Podzols at upper‐slope or shoulder positions and to Albic Cambisols at mid‐slope positions. During the Sub‐Boreal period, Stagnosols started to form at the lower part of the slope catena. Overall, the highest erosion rates were calculated at the upper‐slope position and the lowest rates at mid‐slope sites. Berylium‐10 (10Be) data showed that the Bs, BC/C were covered during the Holocene by a colluvium with a different geological composition which complicated the calculation of erosion or accumulation rates. The interpretation of erosion and accumulation rates in such multi‐layered materials may, therefore, be hampered. However, the multi‐methodological reconstruction we applied shed light on the soil and landscape evolution of the eastern Karkonosze Mountains. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
30.
Extreme erosion events can produce large short-term sediment fluxes. Such events complicate erosion rates estimated from cosmogenic nuclide concentrations in river sediment by providing sediment with a concentration different from the long-term basin average. We present a detrital 10Be study in southern Taiwan, with multiple samples obtained in a time sequence bracketing the 2009 Typhoon Morakot, to assess the impact of landslide sediment on 10Be concentrations (N10Be) in river sediment. Sediment samples were collected from 13 major basins, two or three times over the last decade, to observe the temporal variation of N10Be. Landslide inventories with time intervals of 5–6 years were used to quantify sediment flux changes. A negative correlation between N10Be and landslide areal density indicates dilution of N10Be by landslide sediment. Denudation rates estimated from the diluted N10Be can be up to three times higher than the lowest rate derived from the same basins. Observed increases imply that, 3 years after the passage of Typhoon Morakot, fluvial channels still contain a considerable amount of sediment provided by hillslope landslides during the event. However, higher N10Be in 2016 samples indicate that the contribution from landslide sediment at the sampled grain size has decreased with time. The correlation between changes in N10Be and landslide area and volume is not strong, likely resulting from the stochastic and complex nature of sediment transport. To simultaneously evaluate the volume of landslide-derived sediment and estimate the background denudation rate, associated with less impulsive sediment supply, we constructed a sediment-mixing model with the time series of N10Be and landslide inventories. The spatial pattern of background erosion rate in southern Taiwan is consistent with the regional tectonic framework, indicating that the landscape is evolving mainly in response to the tectonic forcing, and this signal is modified, but not obscured by impulsive sediment supply. © 2019 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号