首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   265篇
  免费   8篇
  国内免费   11篇
测绘学   5篇
大气科学   17篇
地球物理   65篇
地质学   93篇
海洋学   25篇
天文学   71篇
自然地理   8篇
  2023年   5篇
  2022年   7篇
  2021年   6篇
  2020年   5篇
  2019年   17篇
  2018年   11篇
  2017年   12篇
  2016年   13篇
  2015年   12篇
  2014年   11篇
  2013年   14篇
  2012年   9篇
  2011年   10篇
  2010年   14篇
  2009年   22篇
  2008年   14篇
  2007年   8篇
  2006年   9篇
  2005年   10篇
  2004年   7篇
  2003年   4篇
  2002年   7篇
  2001年   6篇
  2000年   5篇
  1999年   2篇
  1998年   2篇
  1997年   2篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1992年   1篇
  1989年   1篇
  1988年   1篇
  1987年   3篇
  1986年   1篇
  1985年   3篇
  1984年   1篇
  1983年   5篇
  1982年   3篇
  1981年   1篇
  1979年   2篇
  1978年   3篇
  1977年   3篇
  1976年   1篇
  1975年   3篇
  1973年   2篇
  1972年   2篇
  1971年   1篇
排序方式: 共有284条查询结果,搜索用时 31 毫秒
91.
Reeve et al. (2022) address the stratigraphic record of continental breakup by focusing on a set of stratigraphic unconformities from a proximal sector of the NW Australian continental margin, inboard from the Exmouth Plateau. They suggest that such unconformities can potentially document a well-defined three-stage process: end of the syn-rift phase, formation of a wide continent-ocean transition zone (COTZ) and generation of ‘true’ Penrose-type oceanic crust. We counterargue that continental breakup is a protracted event that can only be understood via seismic- and chronostratigraphic correlations of strata, and their composing sequences, across and along rifted margins. Tying proximal stratigraphic unconformities to magnetic anomalies outboard from the study area in Reeve et al. (2022) is open to question. In parallel, we suggest that age resolutions of ca. 1 Ma are not achievable using the micropaleontological data presented in Reeve et al. (2022), with an important reworking of microfossil assemblages potentially occurring during the erosional process forming local and regional unconformities. Our discussion addresses these points in more detail.  相似文献   
92.
The dynamic flare of 6 November, 1980 (max 15:26 UT) developed a rich system of growing loops which could be followed in H for 1.5 hr. Throughout the flare, these loops, near the limb, were seen in emission against the disk. Theoretical computations of deviations from LTE populations for a hydrogen atom reveal that this requires electron densities in the loops close to, or in excess of 1012 cm -3. From measured widths of higher Balmer lines the density at the tops of the loops was found to be 4 x 1012 cm -3 if no non-thermal motions were present, or 5 × 1011 cm -3 for a turbulent velocity of ~ 12 km s -1.It is now general knowledge that flare loops are initially observed in X-rays and become visible in H only after cooling. For such a high density, a loop would cool through radiation from 107 to 104 K within a few minutes so that the dense H loops should have heights very close to the heights of the X-ray loops. This, however, contradicts the observations obtained by the HXIS and FCS instruments on board SMM which show the X-ray loops at much higher altitudes than the loops in H. Therefore, we suggest that the density must have been significantly lower when the loops were formed and that the flare loops were apparently both shrinking and increasing in density while cooling.NAS/NRC Research Associate, on leave from CNIE, Argentina.Operated by the Association of Universities for Research in Astronomy, Inc., under contract with the National Science Foundation. Partial support for the National Solar Observatory is provided by the USAF under a Memorandum of Understanding with the NSF.  相似文献   
93.
Using a simplified form of the bremsstrahlung cross-section, we obtain an analytic expression for the intensity of electron-beam-produced hard X-ray emission with depth in solar flares. The results show that footpoint emission is more likely than previously thought, and we discuss these results in the light of recent observations.Presidential Young Investigator.NAS/NRC Research Associate, on leave from CNIE, San Miguel, Argentina.  相似文献   
94.
Based on petrographical data, three types of greisen have been characterized at the western border of Água Boa pluton: siderophyllite–topaz–quartz greisen (greisen 1), fluorite–phengite–quartz greisen (greisen 2) and quartz–chlorite–phengite greisen (greisen 3). Episyenites were also identified.Two fluids of independent origin interacted with the same protolith – a hornblende-biotite alkali feldspar granite – and produced both the greisens and potassic episyenite: (1) an acid, low-salinity (4–12 wt.% NaCl eq.), F-rich, relatively hot (400–350 °C) reduced aqueous-carbonic fluid (CH4–H2O–NaCl–FeCl2 ± KCl), which by immiscibility gave rise to fluid IA (aqueous) and IC (carbonic); and (2) a lower salinity (2–4 wt.% NaCl eq.) and temperature (200–150 °C) aqueous fluid (H2O–NaCl), which was responsible for all dilution processes. Fluid 1 seems to have had a magmatic-hydrothermal origin, while fluid 2 is probably surface-derived (meteoric water?). An alkaline, F-poorer and diluted equivalent of fluid IA was interpreted to have caused the episyenitization of the granite host rock as well as the formation of phengite-rich greisen 3. The continuos interaction of this fluid with the potassic episyenite produced a moderate- to high-salinity (20–24 wt.% NaCl eq.), low-temperature (200–100 °C) fluid (H2O–NaCl–CaCl2 ± KCl), leading to the formation of chlorite-rich zone of greisen 3 and late silicification of potassic episyenite.In the greisen 1, decreasing F-activity and increasing oxygen fugacity, as the system cooled down, favored the formation of a topaz-rich inner zone, which grades into a siderophyllite-rich zone outwardly. Greisen 2 was formed under more oxidizing conditions by fluids poorer in F than those trapped in the siderophyllite-rich zone.The oxidation of aqueous-carbonic fluid took place at three distinct stages: (i) below the FMQ buffer; (ii) between the FMQ and NNO buffers; and (iii) above the NNO buffer.The dissolution cavities generated during the episyenitization process increased the permeability of the altered rocks, resulting in an increase of the fluid/rock ratios at the potassic episyenite and greisen 3 sites.All these fluids were trapped under pressure conditions of <1.0 kbar, representing shallow crustal levels and are consistent with those that have been estimated for the Pitinga tin–granites.The oxygen fugacity, F-activity gradients and salinity variations that occurred during the cooling of the hydrothermal system, in addition to differences in permeability, were important factors in the formation of distinct greisens. They not only controlled the fluid compositional changes, but also caused the cassiterite and sulfide precipitation at the greisen sites.  相似文献   
95.
We investigate the response of dust particles in the mid-plane of a protoplanetary disc to the turbulent velocity field of long-lived, large-scale vortical circulation. The dynamical problem is studied through numerical integrations of the equations of motion for individual particles (the sizes of which range from centimetres to metres) subject to the solar gravity and the friction drag of the nebular gas. It is found, neglecting the thickness of the disc, that the particles do not drift inwards to the central star as occurs in a standard symmetrical nebula. Vortices tend to capture a large number of the particles. The effectiveness of this size-selective concentration mechanism depends not only on the value of the drag and the distance from the Sun, but also on the elongation of the vortex and its characteristic lifetime. Typical anticyclonic vortices with exponential decay times of 30 orbital periods and semi-axis ratios of 4 can increase the local surface density by a factor of 4 in a lifetime and accumulate 0.03–0.3 Earth masses. If the elongation is significant (>7), the vortex cannot concentrate any significant amount of solid material. Vortices with an elongation of about 2 are the most effective as regards trapping of dust. We have also found analytical expressions for the capture time as well as capture constraints as a function of the friction parameter, the elongation of the vortex and the impact parameter. By increasing the lifetime and the surface density of the solid particles, this confining mechanism can make the agglomeration of the solid material of the nebula (through collisional aggregation or gravitational instabilities) much more efficient than previously believed. This offers new possibilities for the formation of the planetesimals and the giant planet cores, and may explain the rapid formation of extrasolar giant planets.  相似文献   
96.
We examine empirical atmospheric structures that are consistent with enhanced white-light continuum emission in solar flares. This continuum can be produced either by hydrogen bound-free emission in an enhanced region in the upper chromosphere, or by H- emission in an enhanced region around the temperature minimum. In the former case, weak Paschen jumps in the spectrum will be present, with the spectrum being dominated by a strong Balmer continuum, while in the latter case the spectrum exhibits a weaker, flat enhancement over the entire visible spectrum.We find that when proper account is taken of radiative backwarming processes, the two enhanced atmospheric regions above are not independent, in that irradiation by Balmer continuum photons from the upper chromosphere creates sufficient heating around the temperature minimum to account for the temperature enhancements there. Thus the problem of main phase white-light flare production reduces to one of creating temperature enhancements of order 104 K in the upper chromosphere; radiative backwarming then naturally accounts for the enhancements of order 100 K around the temperature minimum.Heating by electron and proton bombardment, and by XUV irradiation from above, are then considered as candidates for creating the necessary enhancements in the upper chromosphere. We find that electron bombardment can be ruled out, whereas bombardment by protons in the few-MeV energy range is a viable candidate, but one without strong observational support. The XUV irradiation hypothesis is examined by incorporating it self-consistently into the PANDORA radiative transfer algorithm used to construct the empirical model atmospheres; we find that the introduction of XUV radiation, with flux and spectrum appropriate to white-light flare events, does indeed produce sufficient radiative heating in the upper chromosphere to balance the radiative losses associated with the required temperature enhancements.In summary, we find that the radiative coupling of (i) the upper chromosphere and temperature minimum regions (through Balmer continuum photons) and (ii) the transition region and upper chromosphere (through XUV photons) can account for white-light emission in solar flares.Presidential Young Investigator.  相似文献   
97.
Sea level trends and inter-annual variability in the Mediterranean Sea for the period 1960–2000 is explored by comparing observations from tide gauges with sea level hindcasts from a barotropic 2D circulation model, and two full primitive equation 3D ocean circulation models, a regional one and the Mediterranean component of a global one,. In the 2D model, 50% of the sea level variance was found to result from the wind and atmospheric pressure forcing. In the 3D models, 20% of the sea level variance was explained by the steric effects. The sea level residuals at the tide gauges locations, calculated by subtraction of the 2D model output from the sea level observations are significantly correlated (r = 0.4) with the steric signals from the 3D models. After the removal of the atmospheric and the steric contributions the tide-gauge sea level records indicate a period where sea level was stable (1960–1975) and a period where sea level was rising (1975–2000) with rates in the range 1.1–1.8 mm/yr. A part of the residual trend can be explained by the contribution of local land movements (0.3 mm/yr) while its major part indicates a global signal, probably mass addition, appearing after 1975.  相似文献   
98.
We show that sampling effects in the initial mass function are very important in the low-mass cluster case. To this aim, we compute photoionization models ionized by realistic clusters made up of various combinations of individual stars and clusters built with a synthesis model. We discuss the differences in the position on diagnostic diagrams, their implications, and future and ongoing applications of the present work.  相似文献   
99.
Here we report the serendipitous identification of a bright optical transient in the vicinity of the dwarf elliptical galaxy M 32 (NGC 221). This transient (MONS OT J004240.69+405142.0) was detected using filtered CCD imaging, about 20 arcsec southwest from the core of M 32, at equatorial coordinates α = 00:42:40.69 ± 0.05, δ = +40:51:42.0 ± 0.5, between 04:20:16 and 04:21:46 UT on June 22, 2007. A detailed analysis of the intensity profile of the feature suggests that it is of stellar nature with apparent visual magnitude 9.69 ± 0.15 which gives an absolute magnitude of ?14.7 ± 0.3 if the feature is located in M 31/M 32. Under the assumption of the event reported here being of cosmic origin and although no correlation with GRBs in time or space has been found, the behaviour of the optical transient appears to resemble that of the recently observed GRB 080319B: very fast ascent and decay of several magnitudes within a few minutes. If this interpretation is correct, the afterglow decay was extremely rapid, decreasing by more than 5 mag. in about 2 min, α = 2.4. Given its properties, the event is a possible orphan GRB optical afterglow candidate originated beyond the Local Group. Alternative explanations are also discussed.  相似文献   
100.
We study the spatial and spectral characteristics of the 3.5 to 30.0 keV emission in a solar flare of 9 May, 1980. We find that: (a) A classical thick target interpretation of the hard X-ray burst at energies E 10 keV implies that approximately all the electrons contained within the flare loop(s) have to be accelerated per second. (b) A thermal model interpretation does not fit the data, unless its characteristics are such that it does not represent an efficient alternative to the acceleration model. We thus conclude that: (c) Acceleration does take place during the early phase of the impulsive hard X-ray event, but substantial amount of the emission at low (<20 keV) energies is of thermal origin. (d) We show the evolution of the energy content in the flare volume, and find that the energy input requirements are such that 102 erg cm-3 s-1 have to be released within the flare structure(s), for a period of time comparable to that of the hard X-ray burst emission. We also point out that although the main flare component ( 90% of the soft X-ray emission) was confined to a compact magnetic kernel, there are evidences of interaction of this structure with a larger field structure connecting towards the leading portion of the active region, where secondary H brightenings were observed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号