首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   571篇
  免费   13篇
  国内免费   19篇
测绘学   9篇
大气科学   95篇
地球物理   119篇
地质学   157篇
海洋学   173篇
天文学   27篇
综合类   9篇
自然地理   14篇
  2023年   2篇
  2022年   6篇
  2021年   15篇
  2020年   12篇
  2019年   8篇
  2018年   29篇
  2017年   34篇
  2016年   43篇
  2015年   41篇
  2014年   36篇
  2013年   37篇
  2012年   34篇
  2011年   53篇
  2010年   43篇
  2009年   35篇
  2008年   26篇
  2007年   24篇
  2006年   25篇
  2005年   20篇
  2004年   12篇
  2003年   18篇
  2002年   9篇
  2001年   8篇
  2000年   5篇
  1999年   8篇
  1998年   2篇
  1997年   6篇
  1994年   1篇
  1993年   3篇
  1992年   2篇
  1988年   1篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1981年   1篇
  1973年   1篇
排序方式: 共有603条查询结果,搜索用时 703 毫秒
351.
Recent extensive studies have suggested that the occurrence of warm-pool El Niño has increased since the late 1970s and will increase in future climate. Occurrence frequencies of cold-tongue and warm-pool El Niño have been investigated in the observational record (1980–2006) and in the future 50 years (2007–2056) based on 100 synthetic SST datasets with estimates of statistical confidence. In the observational record, 80% of the warm-pool El Niño occurred since 1980 over a period of 27 years; only 20% of the warm-pool El Niño occurred prior to 1980 over a period of 110 years. The 100 synthetic datasets, on average, produce 142 months of cold-tongue El Niño in 2007–2056 as opposed to an average 107 months in the same length of the observational data; this is a 20.7% increase in the occurrence of cold-tongue El Niño compared with the observational period. Warm-pool El Niño occurred for 112 months in 2007–2056 as opposed to an average occurrence of 42 months in the observational record; this is 2.5 times the occurrence frequency in the 1980–2006 period in the synthetic datasets. As a result, occurrence frequencies of cold-tongue and warm-pool El Niño in the period of 2007–2056 become quite comparable to each other in the synthetic datasets. It is expected in the next 50 years that warm-pool El Niño will be nearly as frequent as cold-tongue El Niño.  相似文献   
352.
Surface erythemal UV radiation is mainly affected by total column ozone, aerosols, clouds, and solar zenith angle. The effect of ozone on the surface UV radiation has been explored many times in the previous studies due to the decrease of ozone layer. In this study, we calculated the effect of aerosols on the surface UV radiation as well as that of ozone using data acquired from Ozone Monitoring Instrument (OMI). First, ozone, aerosol optical depth (AOD), and surface erythemal UVB radiation measured from satellite are compared with those from ground measurements. The results showed that the comparison for ozone was good with r 2 of 0.92. For aerosol, there was difference between satellite measurements and surface measurements due to the insufficient information on aerosol in the retrieval algorithm. The r 2 for surface erythemal UV radiation was high (~0.94) but satellite measurements showed about 30% larger values than surface measurements on average by not considering the effect of absorbing aerosols in the retrieval process from satellite measurements. Radiative amplification factor (RAF) is used to access the effect of ozone and aerosol quantitatively. RAF for ozone was 0.97~1.49 with solar zenith angle. To evaluate the effect of aerosol on the surface UV radiation, only clear-sky pixel data were used and solar zenith angle and total column amount of ozone were fixed. Also, RAF for aerosol was assessed according to the single scattering albedo (SSA) of aerosols. The results showed that RAF for aerosol with smaller SSA (< 0.90) was larger than that for with larger SSA (> 0.90). The RAF for aerosol was 0.09~0.22 for the given conditions which was relatively small compared to that for ozone. However, considering the fact that aerosol optical depth can change largely in time and space while the total column amount of ozone does not change very much, it needs to include the effect of aerosol to predict the variations of surface UV radiation more correctly.  相似文献   
353.
Recently, many studies have argued for the existence of two types of El Niño phenomena based on different spatial distributions: the conventional El Niño [or Eastern Pacific (EP) El Niño], and the Central Pacific (CP) El Niño. Here, we investigate the decadal modulation of CP El Niño occurrences using a long-term coupled general circulation model simulation, focusing, in particular, on the role of climate state in the regime change between more and fewer CP El Niño events. The higher occurrence regime of the CP El Niño coincides with the lower occurrence regime of EP El Niño, and vice versa. The climate states associated with these two opposite regimes resemble the leading principal component analysis (PCA) modes of tropical Pacific decadal variability, indicating that decadal change in climate state may lead to regime change in terms of two different types of El Niño. In particular, the higher occurrence regime of CP El Niño is associated with a strong zonal gradient of mean surface temperature in the equatorial Pacific, along with a strong equatorial Trade wind over the area east of the dateline. In addition, the oceanic variables—the mixed layer depth and the thermocline depth—show values indicating increased depth over the western-to-central Pacific. The aforementioned climate states obviously intensify zonal advective feedback, which promotes increased generation of the CP El Niño. Frequent CP El Niño occurrences are not fully described by oceanic subsurface dynamics, and dynamical or thermodynamical processes in the ocean mixed layer and air–sea interaction are important contributors to the generation of the CP El Niño. Furthermore, the atmospheric response with respect to the SSTA tends to move toward the west, which leads to a weak air–sea coupling over the eastern Pacific. These features could be regarded as evidence that the climate state can provide a selection mechanism of the El Niño type.  相似文献   
354.
We analyzed 77 surface sediment samples collected in the southwestern East/Japan Sea from the Korea Strait through the Ulleung Basin and the Korea Plateau for grain size, calcium carbonate, organic carbon, and major (Na, Mg, Al, Fe, K, Ca, and Ti) and trace elements (P, Mn, Sr, Li, Sc, V, Cr, Co, Ni, Zn, Cu, and Pb).The chemical composition of the surface sediments was found to be highly variable spatially. Cluster analysis of surface sediment chemical compositions indicated five major geochemical sedimentary environments: basin, lower slope, coast and upper slope, inner shelf, and outer shelf. Continental-shelf sediments were rich in shell fragments and had relict and coarse-grained characteristics. Recent fine-grained sediments were only distributed in coastal, slope, and basin areas. Concentrations of Al, K, Ca, Ti, Cr, and Sc were highest in the coastal and upper slope areas and decreased with water depth. Elemental ratios using major and trace elements indicated that coastal and upper slope detrital sediments were mixtures of sediments derived from the Changjiang (Yangtze) and Nakdong Rivers. Although the concentrations of organic carbon, P, Mn, V, Co, Ni, Cu, and Pb increased with water depth, their distribution patterns indicated authigenic (V, Cu, and Pb) and diagenetic (Fe, P, Mn, Co, and Ni) origins. The distribution pattern with water depth suggested that the chemical composition of surface sediment was determined by sedimentologic and geochemical processes, such as the supply of detrital and biogenic materials, and authigenic and post-depositional diagenetic processes in sediments.  相似文献   
355.
We report in situ measurements of O-isotopic compositions of magnetite, olivine and pyroxene in chondrules of the Ningqiang anomalous carbonaceous chondrite. The petrographic setting of Ningqiang magnetite is similar to those in oxidized-CV chondrites such as Allende, where magnetite is found together with Ni-rich metal and sulfide in opaque assemblages in chondrules. Both magnetite and silicate oxygen data fall close to the carbonaceous-chondrite-anhydrous-mineral line with relatively large ranges in δ18O in magnetite (−4.9 to +4.2‰) and in silicates (−15.2 to −4.5‰). Magnetite and silicates are not in O-isotopic equilibrium: the weighted average Δ17O (=δ17O − 0.52 × δ18O) values of magnetite are 1.7 to 3.6‰ higher than those of the silicates in the same chondrules. The petrological characteristics and O-isotopic disequilibrium between magnetite and silicates suggest the formation of Ningqiang magnetite by the oxidation of preexisting metal grains by an aqueous fluid during parent body alteration. The weighted average Δ17O of −3.3 ± 0.3‰ is the lowest magnetite value measured in unequilibrated chondrites and there is a positive correlation between Δ17O values of magnetite and silicates in each chondrule. These observations indicate that, during aqueous alteration in the Ningqiang parent asteroid, the water/rock ratio was relatively low and O-isotopic exchange between the fluid and chondrule silicates occurred on the scale of individual chondrules.  相似文献   
356.

The statistical change-point analysis demonstrates that there is a climate regime shift in the April mean precipitation in Korea in 1981. The April mean precipitation in the years post-1981 showed a distinct decrease compared to the years pre-1981. This phenomenon was also noticed in China and Japan, excluding south China. One of the major causes for this decrease in April mean precipitation was the increased snow depth in the mid-latitude regions of continental East Asia. This resulted in a strengthened cold and dry anticyclone anomaly over continental East Asia and a relatively weakened subtropical anticyclone anomaly over the western North Pacific, thus forcing a continuation of the typical winter pressure pattern of “high-West and low-East” in East Asia in April. The strengthened northerly anomaly from this zonal pressure pattern anomaly played a significant role in restricting the northern movement of the subtropical anticyclone and preventing the inflow of warm and humid air into Korea.

  相似文献   
357.
In this paper we discuss the links between saltwater intrusion and subtidal circulation in the Changjiang Estuary based on a 3D numerical model. We restricted our study mainly to the three major outlets of the estuary: the South Passage, the North Passage, and the North Channel. Subtidal transport is landward in the South Passage and NNW- or NW-ward on the shoals, whereas it is mainly seaward in the North Passage and North Channel. Such a residual characteristic is caused by the interaction between tide and shallow water depth. Decomposing analysis indicated that Stokes transport is the major mechanism causing this particular residual transport pattern. Under its influence, the South Passage is the most saline outlet and the North Channel is the major route discharging the Changjiang runoff. Results of a tracer experiment indicated that active water mass exchange occurs from the South Passage to the North Passage and finally to the North Channel. Thus, the salinity in each outlet is determined not only by the tidal-averaged diversion ratio around the bifurcation of the South and North Channels but also by the subtidal circulation in the waterways and on the shoals. The northerly wind produces a horizontal circulation around the river mouth, which flows into the estuary in the North Channel and out of the estuary in the South Channel and South Passage. This circulation increases the salinity in the North Channel and decreases it in the South Passage. Recent engineering projects have intensified the landward residual in the South Passage, thereby increasing the salinity in the South Passage and decreasing the salinity in the North Channel.  相似文献   
358.
359.
360.
Extreme rainfall-induced debris flow can be catastrophic to an urban area,and installation of slit-type barriers can prevent such damage while minimizing negative impact on environments.However,the performance of slit-type barriers against debris flows remains poorly identified partly due to the innate complexity in interactions between debris flow and solid structure.This paper investigated the flow behaviors of debris affected by slit-type barriers using the computational fluid dynamics(CFD)method,in which the numerical model based on the volume of fluid method was verified using the physical modeling results.The sensitivity analysis was performed by building metamodels to determine the primary parameters influencing the barrier performance against debris flows among various variables,in which the effect of input properties and design parameters,particularly the soil concentration in fluidized debris,initial velocity and volume of debris,the barrier height,and the opening ratio,was evaluated from the perspectives of the flow energy reduction and debris trapping.The initial velocity and volume of debris were found to play a significant role in determining the debris flow characteristics.A decrease in the opening ratio in the channel primarily facilitated the energy reduction and trapping due to the reduced opening size.However,the barrier height exhibited a limited effect when the height was sufficiently high to block the debris flow volume.In addition,it was observed that the double barrier system effectively increased the energy reduction while keeping the benefit of open-type barrier.The developed simulation method and obtained results provide an effective tool and an insight that can contribute to an optimum design of the debris-flow barrier.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号