首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   571篇
  免费   13篇
  国内免费   19篇
测绘学   9篇
大气科学   95篇
地球物理   119篇
地质学   157篇
海洋学   173篇
天文学   27篇
综合类   9篇
自然地理   14篇
  2023年   2篇
  2022年   6篇
  2021年   15篇
  2020年   12篇
  2019年   8篇
  2018年   29篇
  2017年   34篇
  2016年   43篇
  2015年   41篇
  2014年   36篇
  2013年   37篇
  2012年   34篇
  2011年   53篇
  2010年   43篇
  2009年   35篇
  2008年   26篇
  2007年   24篇
  2006年   25篇
  2005年   20篇
  2004年   12篇
  2003年   18篇
  2002年   9篇
  2001年   8篇
  2000年   5篇
  1999年   8篇
  1998年   2篇
  1997年   6篇
  1994年   1篇
  1993年   3篇
  1992年   2篇
  1988年   1篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1981年   1篇
  1973年   1篇
排序方式: 共有603条查询结果,搜索用时 574 毫秒
111.
This paper presents reviews of studies on properties of coal pertinent to carbon dioxide (CO2) sequestration in coal with specific reference to Victorian brown coals. The coal basins in Victoria, Australia have been identified as one of the largest brown coal resources in the world and so far few studies have been conducted on CO2 sequestration in this particular type of coals. The feasibility of CO2 sequestration depends on three main factors: (1) coal mass properties (chemical, physical and microscopic properties), (2) seam permeability, and (3) gas sorption properties of the coal. Firstly, the coal mass properties of Victorian brown coal are presented, and then the general variations of the coal mass properties with rank, for all types of coal, are discussed. Subsequently, coal gas permeability and gas sorption are considered, and the physical factors which affect them are examined. In addition, existing models for coal gas permeability and gas sorption in coal are reviewed and the possibilities of further development of these models are discussed. According to the previous studies, coal mass properties and permeability and gas sorption characteristics of coals are different for different ranks: lignite to medium volatile bituminous coals and medium volatile bituminous to anthracite coals. This is important for the development of mathematical models for gas permeability and sorption behavior. Furthermore, the models have to take into account volume effect which can be significant under high pressure and temperature conditions. Also, the viscosity and density of supercritical CO2 close to the critical point can undergo large and rapid changes. To date, few studies have been conducted on CO2 sequestration in Victorian brown coal, and for all types of coal, very few studies have been conducted on CO2 sequestration under high pressure and temperature conditions.  相似文献   
112.
Estuarine tidal flats are both ecologically and economically important, hence developing methods to reliably measure ecosystem health is essential. Because benthic fauna play a central role in the food web of tidal flats, in this study we set out to quantitatively describe the intertidal zonation of macro-invertebrates and their associations with specific environmental parameters along three transects in the Saemangeum tidal flat, Korea. The abundance and biomass of intertidal fauna with respect to five environmental parameters (i.e., shore level, mud content, coarse sand content, water content, and organic content) were measured, to identify environmental factors that influence macrofaunal distribution in intertidal soft bottom habitats. A total of 75 species were identified, with dominant species showing distinct zones of distribution along all transects. The number of species recorded in each transect was found to be dependent on sediment characteristics and salinity. Cluster analysis classified the entire study area into three faunal assemblages (i.e., location groups), which were delineated by characteristic species, including (A) ‘Periserrula–Macrophthalmus’, (B) ‘Umbonium–Meretrix’, and (C) ‘Prionospio–Potamocorbula’. Four environmental variables (i.e., shore level, water content, mud content, and organic content) appeared to determine factors that distinguished the three faunal assemblages, based on the discriminant analysis. The faunal assemblage types of the sampled locations were accurately predicted from environmental variables in two discriminant functions, with a prediction accuracy of 98%. It should be noted that the zonation of benthos in the lower section (C) of Sandong had been affected by the construction of a nearby dike, while this parameter had remained essentially unchanged at the other two location groups (A–B). Overall, the zonation of benthos from the Saemangeum tidal flat was explained adequately by the measured environmental variables, implying that faunal assemblages are closely associated with certain combinations of abiotic factors. The identification of such reliable associations may facilitate the development of statistical models to predict faunal distributions based on environmental variables at both local and regional scales. The entire study area was embanked in 2006 (one year after this study), and an integrated plan was set into force to develop claimed land into industrial, residential and agricultural districts, which also included a partial restoration program of the tidal flats located near to the study area.  相似文献   
113.
Both radiocarbon and optically stimulated luminescence (OSL) dating methods were applied to test their suitability for establishing a chronology of arid-zone lacustrine sediments using a 5.88-m-long core drilled from Lake Ulaan, southern Mongolia. Although the radiocarbon and OSL ages agree in some samples, the radiocarbon ages are older than the corresponding OSL ages at the 550-cm depth horizon (late Pleistocene) and in the 100–300-cm interval (early to late Holocene). In the early to late Holocene, radiocarbon ages are consistently older than OSL ages by 4,100–5,800 years, and in the late Pleistocene by 2,700–3,000 years. Grain-size analysis of early to late Holocene sediments and one late Pleistocene sediment sample (550-cm depth) indicates that eolian processes were the dominant sediment-transport mechanism. Also, two late Pleistocene sediments samples (from 400- to 500-cm depths) are interpreted to have been deposited by both eolian and glaciofluvial processes. Accordingly, the radiocarbon ages that were older than the corresponding OSL ages during the Holocene seem to have been a consequence of the influx of 14C-deficient carbon delivered from adjacent soils and Paleozoic carbonate rocks by the westerly winds, a process that is also active today. In addition to the input of old reworked carbon by eolian processes, the late Pleistocene sediments were also influenced by old carbon delivered by deglacial meltwater. The results of this study suggest that when eolian sediment transport is suspected, especially in lakes of arid environments, the OSL dating method is superior to the radiocarbon dating method, as it eliminates a common ‘old-carbon’ error problem.  相似文献   
114.
Every year, the Republic of Korea experiences numerous landslides, resulting in property damage and casualties. This study compared the abilities of frequency ratio (FR), analytic hierarchy process (AHP), logistic regression (LR), and artificial neural network (ANN) models to produce landslide susceptibility index (LSI) maps for use in predicting possible landslide occurrence and limiting damage. The areas under the relative operating characteristic (ROC) curves for the FR, AHP, LR, and ANN LSI maps were 0.794, 0.789, 0.794, and 0.806, respectively. Thus, the LSI maps developed by all the models had similar accuracy. A cross-tabulation analysis of landslide occurrence against non-occurrence areas showed generally similar overall accuracies of 65.27, 64.35, 65.51, and 68.47 % for the FR, AHP, LR, and ANN models, respectively. A correlation analysis between the models demonstrated that the LR and ANN models had the highest correlation (0.829), whereas the FR and AHP models had the lowest correlation (0.619).  相似文献   
115.
The chemical speciation of potentially toxic elements (As, Cd, Cu, Pb, and Zn) in the contaminated soils and sulfides-rich tailings sediments of an abandoned tungsten mine in Korea was evaluated by conducting modified BCR sequential extraction tests. Kinetic and static batch leaching tests were also conducted to evaluate the potential release of As and other heavy metals by acidic rain water and the leaching behaviors of these heavy metals. The major sources of the elements were As-, Zn- and Pb-bearing sulfides, Pb carbonates (i.e., cerussite), and Pb sulfates (i.e., anglesite). The biggest pollutant fraction in these soil and tailing samples consists of metals bound to the oxidizable host phase, which can be released into the environment if conditions become oxidative, and/or to residual fractions. No significant difference in total element concentrations was observed between the tailings sediments and contaminated soils. For both sample types, almost no changes occurred in the mobility of As and the other heavy metals at 7 days, but the mobility increased afterwards until the end of the tests at 30 days, regardless of the initial pH. However, the mobility was approximately 5–10 times higher at initial pH 1.0 than at initial pHs of 3.0 and 5.0. The leached amounts of all the heavy metal contents were higher from tailings sediments than from contaminated soils at pH > 3.0, but were lower at pH < 3.0 except for As. Results of this study suggest that further dissolution of heavy metals from soil and tailing samples may occur during extended rainfall, resulting in a serious threat to surface and groundwater in the mine area.  相似文献   
116.
In this study, a statistical model is developed to predict the frequency of tropical cyclones (TCs) that influence Taiwan in boreal summer. Predictors are derived from large-scale environments from February to May in six regions, including four atmospheric circulation predictors over the western sea and eastern sea of Australia, the subtropical western North Pacific (SWNP), and the eastern sea of North America, and two sea surface temperature predictors in the Southeast Indian Ocean and the North Atlantic. The statistical model is verified based on statistical cross-validation tests and by contrasting the differences in the large-scale environments between high and low TC frequency years hindcasted by the model. The results show the relationships of two atmospheric circulation predictors and one SST predictor around Australia with Antarctic Oscillation (AAO) pattern, as well as the relationships of those in the SWNP and around eastern sea of North America with Pacific/North American teleconnection (PNA) pattern. When the anomalous anticyclone around Australia (positive AAO pattern) and the one over the region from eastern sea of North America and the Aleutian Islands to the SWNP (negative PNA pattern) are both strengthened from February, the trade wind in the equatorial Pacific is intensified and consequently plays an important role in steering TCs towards Taiwan during boreal summer.  相似文献   
117.
We present climate responses of Representative Concentration Pathways (RCPs) using the coupled climate model HadGEM2-AO for the Coupled Model Intercomparison Project phase 5 (CMIP5). The RCPs are selected as standard scenarios for the IPCC Fifth Assessment Report and these scenarios include time paths for emissions and concentrations of greenhouse gas and aerosols and land-use/land cover. The global average warming and precipitation increases for the last 20 years of the 21st century relative to the period 1986-2005 are +1.1°C/+2.1% for RCP2.6, +2.4°C/+4.0% for RCP4.5, +2.5°C/+3.3% for RCP6.0 and +4.1°C/+4.6% for RCP8.5, respectively. The climate response on RCP 2.6 scenario meets the UN Copenhagen Accord to limit global warming within two degrees at the end of 21st century, the mitigation effect is about 3°C between RCP2.6 and RCP8.5. The projected precipitation changes over the 21st century are expected to increase in tropical regions and at high latitudes, and decrease in subtropical regions associated with projected poleward expansions of the Hadley cell. Total soil moisture change is projected to decrease in northern hemisphere high latitudes and increase in central Africa and Asia whereas near-surface soil moisture tends to decrease in most areas according to the warming and evaporation increase. The trend and magnitude of future climate extremes are also projected to increase in proportion to radiative forcing of RCPs. For RCP 8.5, at the end of the summer season the Arctic is projected to be free of sea ice.  相似文献   
118.
Summary Prior to and following the development of a windstorm in the mountainous coastal area of southern Korea, ground level ozone (O3)-concentrations near Kangnung city, on the lee side of the mountains, show a maximum value at approximately 1300 LST, owing to a photolytic cycle of NO2–NO–O3 during the day and a minimum in concentrations at night as a result of the reverse cycle. During the development period of the windstorm, ozone concentrations are generally high all day, and slightly higher during the night. This distribution pattern of ozone is very different from the typical distribution of ozone in the absence of windstorms. High daytime concentrations of ozone during the windstorm are due to both the increase in the amount of ozone from photochemical reactions involving NOx and the increase in O3-concentration due to a decrease in the convective boundary layer thickness under the influence of downslope windstorm conditions on the lee-side of the mountains. At night, the windstorm increases in intensity as the westerly winds combine with a katabatic wind blowing downslope toward the surface at the coast. This causes momentum transport of air parcels in the upper levels toward the surface at the coast and the development of internal gravity waves, which generate a hydraulic jump directed upward over the coast and the East sea, thereby reducing to very thin the thickness of the nocturnal surface inversion layer (NSIL). The higher O3-concentration at night depends mainly upon the shallow NSIL and on some O3 being transported by the momentum transfer from the upper troposphere toward the ground in windstorm conditions.  相似文献   
119.
Statistical seasonal prediction models for the Arctic sea ice concentration (SIC) were developed for the late summer (August-October) when the downward trend is dramatic. The absorbed solar radiation (ASR) at the top of the atmosphere in June has a significant seasonal leading role on the SIC. Based on the lagged ASR-SIC relationship, two simple statistical models were established: the Markovian stochastic and the linear regression models. Crossvalidated hindcasts of SIC from 1979 to 2014 by the two models were compared with each other and observation. The hindcasts showed general agreement between the models as they share a common predictor, ASR in June and the observed SIC was well reproduced, especially over the relatively thin-ice regions (of one- or multi-year sea ice). The robust predictability confirms the functional role of ASR in the prediction of SIC. In particular, the SIC prediction in October was quite promising probably due to the pronounced icealbedo feedback. The temporal correlation coefficients between the predicted SIC and the observed SIC were 0.79 and 0.82 by the Markovian and regression models, respectively. Small differences were observed between the two models; the regression model performed slightly better in August and September in terms of temporal correlation coefficients. Meanwhile, the prediction skills of the Markovian model in October were higher in the north of Chukchi, the East Siberian, and the Laptev Seas. A strong non-linear relationship between ASR in June and SIC in October in these areas would have increased the predictability of the Markovian model.  相似文献   
120.
This study performed a three-dimensional regional-scale simulation of aerosol and cloud fields using a meso-scale non-hydrostatic model with a bin-based cloud microphysics. The representation of aerosols in the model has been improved to account for more realistic multi-modal size distribution and multiple chemical compositions. Two case studies for shallow stratocumulus over Northeast Asia in March 2005 were conducted with different aerosol conditions to evaluate model performance. Improved condensation nuclei (CN) and cloud condensation nuclei (CCN) are attributable to the newly constructed aerosol size distribution. The simulated results of cloud microphysical properties (cloud droplet effective radius, liquid water path, and optical thickness) with improved CN/CCN number are close to the retrievals from satellite-based observation. The effects of aerosol on the microphysical properties of shallow stratocumulus are investigated by model simulation, in terms of columnar aerosol number concentration. Enhanced aerosol number concentration results in increased liquid water path in humid case, but invariant liquid water path in dry case primarily due to precipitation occurrence. The changes of cloud microphysical properties are more predominant for small aerosol burden than for large aerosol burden with the retarded changes in cloud mass and size due to inactive condensation and collision-coalescence processes. Quantitative evaluation of sensitivity factor between aerosol and cloud microphysical properties indicates a strong aerosol-cloud interaction in Northeast Asian region.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号