首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   81篇
  免费   0篇
测绘学   3篇
大气科学   10篇
地球物理   16篇
地质学   17篇
海洋学   2篇
天文学   28篇
自然地理   5篇
  2018年   1篇
  2015年   2篇
  2013年   2篇
  2011年   1篇
  2010年   1篇
  2009年   3篇
  2008年   3篇
  2007年   4篇
  2006年   4篇
  2004年   2篇
  2003年   3篇
  2001年   1篇
  2000年   7篇
  1999年   4篇
  1998年   4篇
  1997年   1篇
  1996年   1篇
  1993年   1篇
  1989年   2篇
  1988年   3篇
  1987年   3篇
  1985年   1篇
  1984年   3篇
  1983年   2篇
  1981年   1篇
  1979年   3篇
  1978年   1篇
  1975年   1篇
  1973年   4篇
  1972年   1篇
  1971年   4篇
  1970年   1篇
  1969年   1篇
  1968年   1篇
  1962年   1篇
  1959年   1篇
  1946年   1篇
  1935年   1篇
排序方式: 共有81条查询结果,搜索用时 296 毫秒
11.
Abstract To investigate the regional thermobaric structure of the diamondiferous Kokchetav ultrahigh‐pressure and high‐pressure (UHP–HP) massif and adjacent units, eclogite and other metabasites in the Kulet and Saldat–Kol regions, northern Kazakhstan, were examined. The UHP–HP massif is subdivided into four units, bounded by subhorizontal faults. Unit I is situated at the lowest level of the massif and consists of garnet–amphibolite and acidic gneiss with minor pelitic schist and orthogneiss. Unit II, which structurally overlies Unit I, is composed mainly of pelitic schist and gneiss, and whiteschist locally with abundant eclogite blocks. The primary minerals observed in Kulet and Saldat–Kol eclogites are omphacite, sodic augite, garnet, quartz, rutile and minor barroisite, hornblende, zoisite, clinozoisite and phengite. Rare kyanite occurs as inclusions in garnet. Coesite inclusions occur in garnet porphyroblasts in whiteschist from Kulet, which are closely associated with eclogite masses. Unit III consists of alternating orthogneiss and amphibolite with local eclogite masses. The structurally highest unit, Unit IV, is composed of quartzitic schist with minor pelitic, calcareous, and basic schist intercalations. Mineral assemblages and compositions, and occurrences of polymorphs of SiO2 (quartz or coesite) in metabasites and associated rocks in the Kulet and Saldat–Kol regions indicate that the metamorphic grades correspond to epidote–amphibolite, through high‐pressure amphibolite and quartz–eclogite, to coesite–eclogite facies conditions. Based on estimations by several geothermobarometers, eclogite from Unit II yielded the highest peak pressure and temperature conditions in the UHP–HP massif, with metamorphic pressure and temperature decreasing towards the upper and lower structural units. The observed thermobaric structure is subhorizontal. The UHP–HP massif is overlain by a weakly metamorphosed unit to the north and is underlain by the low‐pressure Daulet Suite to the south; boundaries are subhorizontal faults. There is a distinct pressure gap across these boundaries. These suggest that the highest grade unit, Unit II, has been selectively extruded from the greatest depths within the UHP–HP unit during the exhumation process, and that all of the UHP–HP unit has been tectonically intruded and juxtaposed into the adjacent lower grade units at shallower depths of about 10 km.  相似文献   
12.
Cross-sections of the Hartley-Huggins bands of 03 at the temperature 195 K have been obtained from photoabsorption measurements at column densities in the range 2 × 1017?1 × 1021 cm?2 throughout the wavelength region 240–350 nm with a 6.65 m photoelectric scanning spectrometer equipped with a 2400 lines mm?1 grating and operated at an instrumental width (FWHM) of 0.003 nm. The assumptions made in putting the measured relative cross-sections on an absolute basis are discussed. Fine structure in the cross-section observed in the Huggins bands is illustrated in the region 323–327 nm where shallow features of width 0.01–0.02 nm occur superposed on a stronger apparent continuum exhibiting broader wavy structure.  相似文献   
13.
Alpine‐type orogenic garnet‐bearing peridotites, associated with quartzo‐feldspathic gneisses of a 140–115 Ma high‐pressure/ultra‐high‐pressure metamorphic (HP‐UHPM) terrane, occur in two regions of the Indonesian island of Sulawesi. Both exposures are located within NW–SE‐trending strike–slip fault zones. Garnet lherzolite occurs as <10 m wide fault slices juxtaposed against Miocene granite in the left‐lateral Palu‐Koro (P‐K) fault valley, and as 10–30 m wide, fault‐bounded outcrops juxtaposed against gabbros and peridotites of the East Sulawesi ophiolite within the right‐lateral Ampana fault in the Bongka river (BR) valley. Six evolutionary stages of recrystallization can be recognized in the peridotites from both localities. Stage I, the precursor spinel lherzolite assemblage, is characterized by Ol+Cpx+Opx±Prg‐Amp ± Spl±Rt±Phl, as inclusions within garnet cores. Stage II, the main garnet lherzolite assemblage, consists of coarse‐grained Ol+Opx+Cpx+Grt; whereas finer‐grained, neoblastic Ol+Opx+Grt+Cpx±Spl±Prg‐Amp±Phl constitutes stage III. Stages IV and V are manifest as kelyphites of fibrous Opx+Cpx+Spl in inner coronas, and Opx+Spl+Prg‐Amp±Ep in outer coronas around garnet, respectively. The final (greenschist facies) retrogressive stage VI is accompanied by recrystallization of Serp+Chl±Mag±Tr±Ni sulphides±Tlc±Cal. P–T conditions of the hydrated precursor spinel lherzolite stage I were probably about 750 °C at 15–20 kbar. P–T determinations of the peak stage IIc (from core compositions) display considerable variation for samples derived from different outcrops, with clustering at 26–38 kbar, 1025–1210 °C (P‐K & BR); 19–21 kbar, 1070–1090 °C (P‐K), and 40–48 kbar, 1205–1290 °C (BR). Stage IIr (derived from rim compositions) generally records decompression of around 4–12 kbar accompanied by cooling of 50–240 °C from the IIc peak stage. Stage III, which post‐dates a phase of ductile deformation, yielded 22±2 kbar at 750±25 °C (P‐K) and 16±2 kbar at 730±40 °C (BR). The granulite–amphibolite–greenschist decompression sequence reflects uplift to upper crustal levels from conditions of 647–862 °C at P=15 kbar (stage IV), through 580–635 °C at P=10–12 kbar (stage V) to 350–400 °C at P=4–7 kbar (stage VI), respectively, and is identical to the sequence recorded in associated granulite, gneiss and eclogite. Sulawesi garnet peridotites are interpreted to represent minor components of the extensive HP‐UHP (peak P >28 kbar, peak T of c. 760 °C) metamorphic basement terrane, which was recrystallized and uplifted in a N‐dipping continental collision zone at the southern Sundaland margin in the mid‐Cretaceous. The low‐T , low‐P and metasomatized spinel lherzolite precursor to the garnet lherzolite probably represents mantle wedge rocks that were dragged down parallel to the slab–wedge interface in a subduction/collision zone by induced corner flow. Ductile tectonic incorporation into the underthrust continental crust from various depths along the interface probably occurred during the exhumation stage, and the garnet peridotites were subsequently uplifted within the HP‐UHPM nappe, suffering a similar decompression history to that experienced by the regional schists and gneisses. Final exhumation from upper crustal levels was clearly facilitated by entrainment in Neogene granitic plutons, and/or Oligocene trans‐tension in deep‐seated strike–slip fault zones.  相似文献   
14.
15.
Peridotite xenoliths from Grenada,Lesser Antilles Island Arc   总被引:2,自引:2,他引:0  
Ultramafic xenoliths comprising harzburgite, lherzolite (reacted harzburgite) and spinel-rich dunite, occur in alkali olivine basalts (M series) of Grenada in the Lesser Antilles island arc. Textures are protogranular, porphyroclastic and granular; the latter are restricted to dunites and areas of the harzburgites/lherzolites where interaction with host magma has occurred. Primary mineralogy comprises olivine, orthopyroxene, clinopyroxene, and spinel. Harzburgites are residual from a fractional partial melting event totaling ~22%. Infiltration of harzburgite by (and reaction with) basalt has produced: a wehrlite, with partial dissolution of primary spinel, an increase in the oxygen fugacity (ƒO2) from primary values 1–2 log ƒO2 units above the fayalite-magnetite-quartz (FMQ) buffer, to 2–2.5 log units above the buffer; reaction of orthopyroxene to form patches of intergrown olivine and clinopyroxene, and bronzite andesite glass (60 wt%, SiO2 18–20 wt% Al2O3 and 3–4 wt% Na2O) with flat to light rare earth element-depleted, chondrite-normalized abundances. Refertilisation of the mantle by reacting melts, producing a clinopyroxene-rich lithology, may form a source of ankaramitic (high-Ca) arc basalts.Editorial responsibility: T.L. Grove  相似文献   
16.
Variations in production rates of warm North Atlantic Deep Water (NADW) have been proposed as a mechanism for linking climate fluctuations in the northern and southern hemispheres during the Pleistocene. We have tested this hypothesis by examining the sensitivity of a thermodynamic/dynamic model for Antarctic sea ice to changes in vertical ocean heat flux and comparing the simulations with modified CLIMAP sea-ice maps for 18 000 B.P. Results suggest that changes in NADW production rates, and the consequent changes in the vertical ocean heat flux in the Antarctic, can only account for about 20%–30% of the overall variance in Antarctic sea-ice extent. This conclusion has been validated against an independent geological data set involving a time series of sea-surface temperatures from the subantarctic. The latter comparison suggests that, although the overall influence of NADW is relatively minor, the linkage may be much more significant at the 41 000-year obliquity period. Despite some limitations in the models and geological data, we conclude that NADW variations may have played only a modest role in causing late Pleistocene climate change in the high latitudes of the southern hemisphere. Our conclusion is consistent with calculations by Manabe and Broccoli (1985) suggesting that atmospheric CO2 changes may be more important for linking the two hemispheres.  相似文献   
17.
Diurnal variations supply only four frequencies with sufficient power to be useful, giving an overall frequency ratio of only 4. Also only permanent observatories supply sufficient accurate data, and their distribution on the Earth is very irregular. More importantly, the assumption implicit in deep conductivity determinations, that the conductivity is a function of depth only, breaks down because of near surface conductivity anomalies.  相似文献   
18.
19.
During the past decades, large amounts of diffuse contaminated soil material have been deposited in the floodplains of the river Rhine in the Netherlands. The dynamic character of this river causes a large spatial variability in the contamination level of its floodplain soils. Characterisation of the spatial variability exclusively based on soil sampling and analysis is often insufficient and expensive. Hyperspectral images can provide additional spatial information for a proper characterisation of the contamination situation of river floodplains. This paper describes the possible application of soil spectroscopy to estimate metal concentration levels in river floodplains. Soil reflectance spectra in the visible-near infrared region (VNIR) were measured in the laboratory for soil samples taken from two river floodplains along the river Waal, the main tributary of the river Rhine in the Netherlands. A multivariate calibration procedure using partial least squares (PLS) regression was applied to establish a relationship between reflectance spectra in the visible-near infrared (VNIR) region and spectrally active soil characteristics (organic matter and clay content) that are intercorrelated with concentration levels of Cd and Zn. Results of the analysis of two river floodplains are summarised and the influence of scale-level and sub soil material on the prediction capability is discussed.  相似文献   
20.
Abstract Examination of an iron meteorite found in South Africa discloses it to be a coarse octahedrite containing 6.90 weight-percent nickel. The meteorite body contains several inclusions of troilite, or troilite plus graphite, and at least one of pure graphite veined with kamacite. Kamacite, cohenite, and phosphides are the other major constituents of the structure.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号