首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   96916篇
  免费   1319篇
  国内免费   818篇
测绘学   2248篇
大气科学   6196篇
地球物理   19201篇
地质学   35183篇
海洋学   8582篇
天文学   22419篇
综合类   285篇
自然地理   4939篇
  2022年   693篇
  2021年   1171篇
  2020年   1265篇
  2019年   1357篇
  2018年   2959篇
  2017年   2777篇
  2016年   3301篇
  2015年   1714篇
  2014年   3132篇
  2013年   5156篇
  2012年   3356篇
  2011年   4391篇
  2010年   3805篇
  2009年   4835篇
  2008年   4447篇
  2007年   4438篇
  2006年   4063篇
  2005年   2952篇
  2004年   2804篇
  2003年   2643篇
  2002年   2458篇
  2001年   2329篇
  2000年   2144篇
  1999年   1663篇
  1998年   1753篇
  1997年   1719篇
  1996年   1360篇
  1995年   1404篇
  1994年   1208篇
  1993年   1082篇
  1992年   1062篇
  1991年   984篇
  1990年   1105篇
  1989年   945篇
  1988年   860篇
  1987年   1017篇
  1986年   815篇
  1985年   1090篇
  1984年   1178篇
  1983年   1096篇
  1982年   1047篇
  1981年   906篇
  1980年   866篇
  1979年   764篇
  1978年   793篇
  1977年   716篇
  1976年   670篇
  1975年   647篇
  1974年   646篇
  1973年   642篇
排序方式: 共有10000条查询结果,搜索用时 13 毫秒
801.
802.
This study addresses whether Raman spectra can be used to estimate the degree of accumulated radiation damage in monazite-(Ce) samples whose chemical composition was previously determined. Our results indicate that the degree of disorder in monazite–(Ce), as observed from increasing Raman band broadening, generally depends on both the structural state (i.e., radiation damage) and the chemical composition (i.e., incorporation of non-formula elements). The chemical effects were studied on synthetic orthophosphates grown using the Li-Mo flux method, and non radiation-damaged analogues of the naturally radiation-damaged monazite–(Ce) samples, produced by dry annealing. We found that the “chemical” Raman-band broadening of natural monazite–(Ce) can be predicted by the empirical formula, $$ {\hbox{FWHM}} {\hbox{[c}}{{\hbox{m}}^{ - {1}}}{]} = {3}{.95} + {26}{.66} \times {\hbox{(Th}} + {\hbox{U}} + {\hbox{Ca}} + {\hbox{Pb)}} {\hbox{[apfu]}} $$ where, FWHM = full width at half maximum of the main Raman band of monazite–(Ce) (i.e., the symmetric PO4 stretching near 970?cm?1), and (Th+U+Ca+Pb) = sum of the four elements in apfu (atoms per formula unit). Provided the chemical composition of a natural monazite–(Ce) is known, this “chemical band broadening” can be used to estimate the degree of structural radiation damage from the observed FWHM of the ν1(PO4) band of that particular sample using Raman spectroscopy. Our annealing studies on a wide range of monazite–(Ce) reference materials and other monazite–(Ce) samples confirmed that this mineral virtually never becomes highly radiation damaged. Potential advantages and the practical use of the proposed method in the Earth sciences are discussed.  相似文献   
803.
The Teplá–Barrandian unit (TBU) has long been considered as a simply bivergent supracrustal ‘median massif’ above the Saxothuringian subduction zone in the Variscan orogenic belt. This contribution reveals a much more complex style of the Variscan tectonometamorphic overprint and resulting architecture of the Neoproterozoic basement of the TBU. For the first time, we describe the crustal-scale NE–SW-trending dextral transpressional Krakovec shear zone (KSZ) that intersects the TBU and thrusts its higher grade northwestern portion severely reworked by Variscan deformation over a southeastern very low grade portion with well-preserved Cadomian structures and only brittle Variscan deformation. The age of movements along the KSZ is inferred as Late Devonian (~380–370?Ma). On the basis of structural, microstructural, and anisotropy of magnetic susceptibility data from the KSZ, we propose a new synthetic model for the deformation partitioning in the Teplá–Barrandian upper crust in response to the Late Devonian to early Carboniferous subduction and underthrusting of the Saxothuringan lithosphere. We conclude that the Saxothuringian/Teplá–Barrandian convergence was nearly frontal during ~380–346?Ma and was partitioned into pure shear dominated domains that accommodated orogen-perpendicular shortening alternating with orogen-parallel high-strain domains that accommodated dextral transpression or bilateral extrusion. The synconvergent shortening of the TBU was terminated by a rapid gravity-driven collapse of the thickened lithosphere at ~346–337?Ma followed by, or partly simultaneous with, dextral strike-slip along the Baltica margin-parallel zones, driven by the westward movement of Gondwana from approximately 345?Ma onwards.  相似文献   
804.
The results of comprehensive geological and metallogenic studies of the Greater Altai are presented. This project has been carried out since 1997 under the guidance of Academician G.N. Shcherba. The importance of these investigations is determined by the need to enhance and further develop mineral resources of nonferrous, noble, rare, and other metals for operating mining and metallurgical enterprises of Kazakhstan. The great body of information on the geology, geophysics, and metallogeny of the region obtained over many years has been integrated on the basis of new global tectonics. The Greater Altai embraces the Hercynides of the Rudny Altai, Qalba-Narym, West Qalba, Zharma-Saur, and the adjacent territories of Russia and China. The present-day tectonic units are considered to be detached blocks of ancient continental massifs that drifted in the Paleoasian ocean and then amalgamated into the structure of the Greater Altai during the Hercynian collision. The tectonic and metallogenic demarcation of the studied territory made possible the recognition of the Rudny Altai, Qalba-Narym, West Qalba, and Zharma-Saur ore belts, different in geology, geodynamic evolution, and metallogeny. The formation conditions and localization of volcanic-hosted massive sulfide, gold, and rare-metal deposits pertaining to certain ore-bearing geochronological levels were specified, and the potential of the region for various mineral resources was estimated.  相似文献   
805.
Weathering of pyrite in the core recovered from black shales of the Bazhenovo Formation (Upper Jurassic-Lower Cretaceous) in the West Siberian marine basin promoted the successive formation of melanterite (FeSO4 · 7H2O) and szomolnokite (FeSO4 · H2O). Szomolnokite was detected in West Siberia for the first time.  相似文献   
806.
Sedimentologic analysis of cores from wells sunk in the Vankor petroleum field allowed refinement of the accumulation conditions producing the sandy strata of the Nizhnyaya Kheta River (Nizhnekhetsky) Formation accumulated in the coastal marine zone and of the Yakovlevo (Yakovlevsky) Formation accumulated under alluvial-deltaic conditions. Petrographic examination of the sandstones added information on the sources, transport, and accumulation conditions of the terrigenous material in the northeastern marginal part of the West Siberian sedimentation basin.  相似文献   
807.
Surface changes on crystalline stones due to salt crystallisation   总被引:1,自引:0,他引:1  
This study assesses the changes on the surface of crystalline stones due to salt crystallisation. Efflorescence was forced to grow on the surface of granite and marbles through 60 cycles of salt crystallisation with sodium sulphate. Changes on surface roughness, gloss and colour were measured every 15 cycles and the specimens were examined with naked eye and SEM. Sodium sulphate produces damage which depends on mineral composition. Results show that granites experience a mechanical decay with an increase in roughness. Peaks of mica can be observed on the surface and cracks widen and grow deeper. Colour and gloss do not show any significant change, although gloss decreases with an increase in surface roughness. In marbles, the decay is mainly chemical. Surface roughness increases due to dissolution of the calcite. White marbles exhibit yellowing. Gloss decreases during the first cycles—as grain boundaries become more visible—but tends to regain almost its initial value as the number of cycles increases. In this case, gloss does not show any relation with surface roughness.  相似文献   
808.
The nearly latitudinal giant fracture zones in the northeastern Pacific Ocean are accompanied by narrow fault-line uplifts making up tectonic couples that strike for thousands of kilometers. They are especially distinctly expressed in the gravity map of the World Ocean [7]. As is shown in the paper, a compensation mechanism of deep mass displacement operates in the uplift-deepwater trench system. The uplifts have similar asymmetric structures, which reflects the long-term unidirectional effect of the deep geodynamic stress. In my opinion, the system of the fault-line uplifts began to form at the Cretaceous-Cenozoic boundary.  相似文献   
809.
810.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号