首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   113篇
  免费   7篇
  国内免费   1篇
大气科学   11篇
地球物理   30篇
地质学   22篇
海洋学   28篇
天文学   19篇
自然地理   11篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2018年   2篇
  2017年   7篇
  2016年   2篇
  2015年   1篇
  2014年   1篇
  2013年   4篇
  2012年   4篇
  2011年   6篇
  2010年   5篇
  2009年   3篇
  2008年   2篇
  2007年   11篇
  2006年   5篇
  2005年   5篇
  2004年   5篇
  2003年   7篇
  2002年   7篇
  2001年   5篇
  2000年   1篇
  1999年   4篇
  1998年   1篇
  1997年   6篇
  1994年   1篇
  1993年   4篇
  1990年   1篇
  1989年   1篇
  1986年   1篇
  1985年   2篇
  1984年   1篇
  1982年   1篇
  1981年   1篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
  1975年   2篇
  1974年   2篇
  1973年   2篇
  1971年   1篇
  1969年   1篇
排序方式: 共有121条查询结果,搜索用时 109 毫秒
111.
A theoretical framework is presented for the estimation of the physical parameters of a structure (i.e., mass, stiffness, and damping) from measured experimental data (i.e., input–output or output‐only data). The framework considers two state‐space models: a physics‐based model derived from first principles (i.e., white‐box model) and a data‐driven mathematical model derived by subspace system identification (i.e., black‐box model). Observability canonical form conversion is introduced as a powerful means to convert the data‐driven mathematical model into a physically interpretable model that is termed a gray‐box model. Through an explicit linking of the white‐box and gray‐box model forms, the physical parameters of the structural system can be extracted from the gray‐box model in the form of a finite element discretization. Prior to experimental verification, the framework is numerically verified for a multi‐DOF shear building structure. Without a priori knowledge of the structure, mass, stiffness, and damping properties are accurately estimated. Then, experimental verification of the framework is conducted using a six‐story steel frame structure under support excitation. With a priori knowledge of the lumped mass matrix, the spatial distribution of structural stiffness and damping is estimated. With an accurate estimation of the physical parameters of the structure, the gray‐box model is shown to be capable of providing the basis for damage detection. With the use of the experimental structure, the gray‐box model is used to reliably estimate changes in structural stiffness attributed to intentional damage introduced. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
112.
Unsuccessful attempts to use process‐scale models to predict long‐term aeolian sediment transport patterns have long been a feature of aeolian research. It has been proposed that one approach to overcome these problems is to identify micro‐scale variables that are important at longer timescales. This paper assesses the contribution of two system variables (secondary airflow patterns and fetch distance) to medium‐term (months to years) dune development. The micro‐scale importance of these variables had been established during previous work at the site (Magilligan Strand, Northern Ireland). Three methods were employed. First, sand drift potentials were calculated using 2 years of regional wind data and a sediment transport model. Second, wind data and large trench traps (2 m length × 1 m width × 1·5 m depth) were used to assess the actual sediment transport patterns over a 2‐month period. Third, a remote‐sensing technique for the identification of fetch distance, a saltation impact sensor (Safire) and wind data were utilized to gauge, qualitatively, sediment transport patterns over a 1‐month period. Secondary airflow effects were found to play a major role in the sediment flux patterns at these timescales, with measured and predicted rates matching closely during the trench trap study. The results suggest that fetch distance is an unimportant variable at this site. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
113.
114.
We report spectroscopy of Comet C/1991 T1 (McNaught-Hartley) at 3-13 μm on January 31.62 and February 1.7 2001 UT (delta=1.29 AU, r=1.40 AU) using the broadband array spectrograph system on the IRTF. The spectrum showed a silicate emission feature extending about 20% above the continuum. Two emission features at 10.3 and 11.2 μm appeared above the silicate band, the latter seemingly indicative of crystalline olivine. The 10.3-μm feature is only a 1-2 sigma detection but if real could indicate the presence of hydrated silicates. The color temperature at 8-13 μm was 260±10 K, approximately 6% above the blackbody radiative equilibrium temperature of 235 K. The magnitude at [N] was 3.13±0.02. On the second night, the comet had brightened slightly ([N]=2.98±0.02) and the two prominent emission features were absent, although the silicate emission feature maintained its trapezoidal shape with shoulders at 9.5 and 11.2 μm.  相似文献   
115.
116.
A rapid and convenient method is described for the estimation of active organic carbon in silty lake sediments collected in regional geochemical surveys. The method utilizes measurement of optical density at 500 nm, of a 4 M nitric acid ? 0.1 M hydrochloric acid leach of a sediment sample and has a precision of ± 26% as determined from separate replicate analyses. An attractive feature of the method lies in its use of the same leach solution on which atomic absorption analyses of trace metals may be made.  相似文献   
117.
Dense networks of wireless structural health monitoring systems can effectively remove the disadvantages associated with current wire‐based sparse sensing systems. However, recorded data sets may have relative time‐delays due to interference in radio transmission or inherent internal sensor clock errors. For structural system identification and damage detection purposes, sensor data require that they are time synchronized. The need for time synchronization of sensor data is illustrated through a series of tests on asynchronous data sets. Results from the identification of structural modal parameters show that frequencies and damping ratios are not influenced by the asynchronous data; however, the error in identifying structural mode shapes can be significant. The results from these tests are summarized in Appendix A. The objective of this paper is to present algorithms for measurement data synchronization. Two algorithms are proposed for this purpose. The first algorithm is applicable when the input signal to a structure can be measured. The time‐delay between an output measurement and the input is identified based on an ARX (auto‐regressive model with exogenous input) model for the input–output pair recordings. The second algorithm can be used for a structure subject to ambient excitation, where the excitation cannot be measured. An ARMAV (auto‐regressive moving average vector) model is constructed from two output signals and the time‐delay between them is evaluated. The proposed algorithms are verified with simulation data and recorded seismic response data from multi‐story buildings. The influence of noise on the time‐delay estimates is also assessed. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
118.
119.
120.
Li  Y.  Luhmann  J. G.  Lynch  B. J.  Kilpua  E. K. J. 《Solar physics》2011,270(1):331-346
Coronal mass ejections (CMEs) carry magnetic structure from the low corona into the heliosphere. The interplanetary CMEs (ICMEs) that exhibit the topology of helical magnetic fluxropes are traditionally called magnetic clouds (MCs). MC fluxropes with axis of low (high) inclination with respect to the ecliptic plane have been referred to as bipolar (unipolar) MCs. The poloidal field of bipolar MCs has a solar cycle dependence. We report a cyclic reversal of the poloidal field of low inclination MC fluxropes during 1976 to 2009. The MC poloidal field cyclic reversal on the same time scale of the solar magnetic cycle is evident over three sunspot cycles. Approximately 48% of ICMEs are MCs, and 40% of IMCs are bipolar MCs during solar cycle 23. The speed of the bipolar MCs has essentially the same distribution as all ICMEs, which implies that they are not from any special type of CMEs in terms of the solar origin. Although CME fluxropes may undergo a number of complications during the eruption and propagation, a significant group of MCs retains sufficient similarity to the source region magnetic field to posses the same cyclic periodicity in polarity reversal. The poloidal field of bipolar MCs gives the out-of-ecliptic-plane field or B z component in the IMF time series. MCs with southward B z field are particularly effective in causing geomagnetic disturbances. During the solar minima, the B z field IMF sequence within MCs at the leading portion of a bipolar MC is the same with the solar global dipole field. Our finding shows that MCs preferentially remove the like polarity of the solar dipole field, and it supports the participation of CMEs in the solar magnetic cycle.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号