首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   199篇
  免费   10篇
  国内免费   1篇
测绘学   17篇
大气科学   19篇
地球物理   36篇
地质学   70篇
海洋学   9篇
天文学   52篇
自然地理   7篇
  2024年   2篇
  2023年   2篇
  2021年   4篇
  2020年   3篇
  2019年   9篇
  2018年   8篇
  2017年   7篇
  2016年   10篇
  2015年   2篇
  2014年   7篇
  2013年   8篇
  2012年   8篇
  2011年   13篇
  2010年   8篇
  2009年   7篇
  2008年   13篇
  2007年   7篇
  2006年   5篇
  2005年   3篇
  2004年   10篇
  2003年   3篇
  2002年   4篇
  2001年   4篇
  2000年   2篇
  1999年   5篇
  1998年   5篇
  1997年   3篇
  1996年   2篇
  1993年   3篇
  1992年   3篇
  1991年   5篇
  1990年   3篇
  1988年   2篇
  1985年   3篇
  1984年   1篇
  1983年   2篇
  1982年   2篇
  1981年   1篇
  1979年   1篇
  1978年   5篇
  1977年   1篇
  1976年   1篇
  1975年   2篇
  1974年   2篇
  1971年   1篇
  1970年   1篇
  1969年   1篇
  1966年   1篇
  1960年   1篇
  1956年   1篇
排序方式: 共有210条查询结果,搜索用时 15 毫秒
121.

We study the predictive capabilities of magnetic-feature properties (MF) generated by the Solar Monitor Active Region Tracker (SMART: Higgins et al. in Adv. Space Res. 47, 2105, 2011) for solar-flare forecasting from two datasets: the full dataset of SMART detections from 1996 to 2010 which has been previously studied by Ahmed et al. (Solar Phys. 283, 157, 2013) and a subset of that dataset that only includes detections that are NOAA active regions (ARs). The main contributions of this work are: we use marginal relevance as a filter feature selection method to identify the most useful SMART MF properties for separating flaring from non-flaring detections and logistic regression to derive classification rules to predict future observations. For comparison, we employ a Random Forest, Support Vector Machine, and a set of Deep Neural Network models, as well as lasso for feature selection. Using the linear model with three features we obtain significantly better results (True Skill Score: TSS = 0.84) than those reported by Ahmed et al. (Solar Phys. 283, 157, 2013) for the full dataset of SMART detections. The same model produced competitive results (TSS = 0.67) for the dataset of SMART detections that are NOAA ARs, which can be compared to a broader section of flare-forecasting literature. We show that more complex models are not required for this data.

  相似文献   
122.
Main group pallasite meteorites are samples of a single early magmatic planetesimal, dominated by metal and olivine but containing accessory chromite, sulfide, phosphide, phosphates, and rare phosphoran olivine. They represent mixtures of core and mantle materials, but the environment of formation is poorly understood, with a quiescent core–mantle boundary, violent core–mantle mixture, or surface mixture all recently suggested. Here, we review main group pallasite data sets and petrologic characteristics, and present new observations on the low‐MnO pallasite Brahin that contains abundant fragmental olivine, but also rounded and angular olivine and potential evidence of sulfide–phosphide liquid immiscibility. A reassessment of the literature shows that low‐MnO and high‐FeO subgroups preferentially host rounded olivine and low‐temperature P2O5‐rich phases such as the Mg‐phosphate farringtonite and phosphoran olivine. These phases form after metal and silicate reservoirs back‐react during decreasing temperature after initial separation, resulting in oxidation of phosphorus and chromium. Farringtonite and phosphoran olivine have not been found in the common subgroup PMG, which are mechanical mixtures of olivine, chromite with moderate Al2O3 contents, primitive solid metal, and evolved liquid metal. Lower concentrations of Mn in olivine of the low‐MnO PMG subgroup, and high concentrations of Mn in low‐Al2O3 chromites, trace the development and escape of sulfide‐rich melt in pallasites and the partially chalcophile behavior for Mn in this environment. Pallasites with rounded olivine indicate that the core–mantle boundary of their planetesimal may not be a simple interface but rather a volume in which interactions between metal, silicate, and other components occur.  相似文献   
123.
Semiempirical band structure calculations were performed on several skutterudite-type compounds by using the extended Hückel method. Starting with the molecular orbital calculations on isolated P4 and As4 rings, the reason for the band dispersions of the skutterudites was found to be the interactions between the nonmetal atoms. Both the intermolecular and the intramolecular interactions between the phosphorus atoms are stronger than those between the arsenic atoms. Hence, the dispersion of the bands in CoP3 is larger than that in CoAs3. The COOP (crystal orbital overlap population) integrals of the intramolecular P-P bonds reveal the relation between the valence electron count and the observed bond lengths. The P-P bonds in the skutterudite-type compounds like TP3 (T = Co, Rh, Ir) become stronger by reduction as in NiP3 and weaker by oxidation as in RT4X12 (X = P, As, Sb; R = alkaline earth or rare earth metals) because the bands near the Fermi level are bonding. The electronic reason for the geometric distortion of the Ge2Y2 (Y = S, Se) units of mixed skutterudites TGe1.5Y1.5 is caused by an electron pair gap on germanium, which corresponds to low electron density perpendicular to the ring plane on the germanium atoms. Received: 6 October 1998 / Revised, accepted: 18 June 1999  相似文献   
124.
Advances in the chemical and isotopic characterisation of geological and environmental materials can often be ascribed to technological improvements in analytical hardware. Equally, the creation of novel methods of data acquisition and interpretation, including access to better reference materials, can also be crucial components enabling important breakthroughs. This biennial review highlights key advances in either instrumentation or data acquisition and treatment, which have appeared since January 2010. This review is based on the assessments by scientists prominent in each of the given analytical fields; it is not intended as an exhaustive summary, but rather provides insight from experts of the most significant advances and trends in their given field of expertise. In contrast to earlier reviews, this presentation has been formulated into a unified work, providing a single source covering a broad spectrum of geoanalytical techniques. Additionally, some themes that were not previously emphasised, in particular thermal ionisation mass spectrometry, accelerator‐based methods and vibrational spectroscopy, are also presented in detail.  相似文献   
125.
The structure of realgar, As4S4, and its evolution with pressure have been investigated employing in situ X-ray diffraction, optical absorption and vibrational spectroscopy on single-crystal samples in diamond-anvil cells. Compression under true hydrostatic conditions up to 5.40 GPa reveals equation-of-state parameters of V 0 = 799.4(2.4) Å3 and K 0 = 10.5(0.4) GPa with \(K_0^\prime\) = 8.7. The remarkably high compressibility can be attributed to a denser packing of the As4S4 molecules with shortening of the intermolecular bonds of up to 12 %, while the As4S4 molecules remain intact showing rigid-unit behaviour. From ambient pressure to 4.5 GPa, Raman spectra exhibit a strong blue shift of the Raman bands of the lattice-phonon regime of 24 cm–1, whereas frequencies from intramolecular As-S stretching modes show negligible or no shifts at all. On pressurisation, realgar shows a continuous and reversible colour change from bright orange over deep red to black. Optical absorption spectroscopy shows a shift of the absorption edge from 2.30 to 1.81 eV up to 4.5 GPa, and DFT calculations show a corresponding reduction in the band gap. Synchrotron-based measurements on polycrystalline samples up to 45.5 GPa are indexed according to the monoclinic structure of realgar.  相似文献   
126.
In seismically active regions, faults nucleate, propagate, and form networks that evolve over time. To simulate crustal faulting processes, including the evolution of fault-zone properties, a rheological model must incorporate concepts such as damage rheology that describe the various stages of the seismic cycle (strain localization, subcritical crack growth and macroscopic failure) while accounting for material degradation and healing and off-fault deformation. Here we study the fundamental patterns of strain-localisation within the framework of a continuum damage rheology by performing a shear band analysis (linear instability analysis) and comparing predictions of shear band orientations with numerical results of the nonlinear problem. We find (analytically and numerically) that the angle between the shear band and the less compressive (transverse) direction is between 47° in compression tests with a strain ratio of 0.25 (highly confined compression test), and 60° for a strain ratio higher than 1.4 (axial compression and transverse extension). In addition we find that shear bands exhibit local dilation (I 1 > 0) in a wide range of strain ratios excluding only simulations with highly confined compression (which yield compacting shear bands or non-localized deformation). Finally, we discuss the applicability of the damage model for simulating deformation in the seismogenic, brittle crust.  相似文献   
127.
This paper presents a novel approach to automated geometric reasoning for 3D building models. Geometric constraints like orthogonality or parallelity play a prominent role in man-made objects such as buildings. Thus, constraint based modelling, that specifies buildings by their individual components and the constraints between them, is a common approach in 3D city models. Since prototyped building models allow one to incorporate a priori knowledge they support the 3D reconstruction of buildings from point clouds and allow the construction of virtual cities. However, high level building models have a high degree of complexity and consequently are not easily manageable. Interactive tools are needed which facilitate the development of consistent models that, for instance, do not entail internal logical contradictions. Furthermore, there is often an interest in a compact, redundancy-free representation. We propose an approach that uses algebraic methods to prove that a constraint is deducible from a set of premises. While automated reasoning in 2D models is practical, a substantial increase in complexity can be observed in the transition to the three-dimensional space. Apart from that, algebraic theorem provers are restricted to crisp constraints so far. Thus, they are unable to handle quality issues, which are, however, an important aspect of GIS data and models. In this article we present an approach to automatic 3D reasoning which explicitly addresses uncertainty. Hereby, our aim is to support the interactive modelling of 3D city models and the automatic reconstruction of buildings. Geometric constraints are represented by multivariate polynomials whereas algebraic reasoning is based on Wu’s method of pseudodivision and characteristic sets. The reasoning process is further supported by logical inference rules. In order to cope with uncertainty and to address quality issues the reasoner integrates uncertain projective geometry and statistical hypothesis tests. Consequently, it allows one to derive uncertain conclusions from uncertain premises. The quality of such conclusions is quantified in a way which is sound both from a logical and a statistical perspective.  相似文献   
128.
Improved antenna phase center models for GLONASS   总被引:6,自引:2,他引:4  
Thanks to the increasing number of active GLONASS satellites and the increasing number of multi-GNSS tracking stations in the network of the International GNSS Service (IGS), the quality of the GLONASS orbits has become significantly better over the last few years. By the end of 2008, the orbit RMS error had reached a level of 3–4 cm. Nevertheless, the strategy to process GLONASS observations still has deficiencies: one simplification, as applied within the IGS today, is the use of phase center models for receiver antennas for the GLONASS observations, which were derived from GPS measurements only, by ignoring the different frequency range. Geo++ GmbH calibrates GNSS receiver antennas using a robot in the field. This procedure yields now separate corrections for the receiver antenna phase centers for each navigation satellite system, provided its constellation is sufficiently populated. With a limited set of GLONASS calibrations, it is possible to assess the impact of GNSS-specific receiver antenna corrections that are ignored within the IGS so far. The antenna phase center model for the GLONASS satellites was derived in early 2006, when the multi-GNSS tracking network of the IGS was much sparser than it is today. Furthermore, many satellites of the constellation at that time have in the meantime been replaced by the latest generation of GLONASS-M satellites. For that reason, this paper also provides an update and extension of the presently used correction tables for the GLONASS satellite antenna phase centers for the current constellation of GLONASS satellites. The updated GLONASS antenna phase center model helps to improve the orbit quality.  相似文献   
129.
Abstract— This study presents results of platinum group element (PGE) analyses of impactites from the Yaxcopoil‐1 (Yax‐1) and Yucatán 6 drill cores of the 180 km‐diameter Chicxulub crater. These are the main elements used for projectile identification. They were determined by nickel sulfide fire assay combined with inductively coupled plasma mass spectrometry. The concentration of PGE in the samples are low. The concentration patterns of the suevite samples resemble the pattern of the continental crust. We conclude that any meteoritic fraction in these samples is below 0.05%. A syn‐ and post‐impact modification of the PGE pattern from meteoritic toward a continental crust pattern is very unlikely. The globally distributed fallout at the Cretaceous‐Tertiary (K/T) boundary, however, has high PGE concentrations. Therefore, the lack of a significant meteoritic PGE signature in the crater is not an argument for a PGE‐poor impactor. Taking the results of three‐dimensional numerical simulations of the Chicxulub event into account, the following conclusions are drawn: 1) The main fraction of the impactor was ejected into and beyond the stratosphere, distributed globally, and deposited in the K/T boundary clay; and 2) the low amount of projectile contamination in the Yax‐1 lithologies may reflect an oblique impact. However, the role of volatiles in the mixing process between projectile and target is not well‐understood and may also have played a fundamental role.  相似文献   
130.
ISO spectra of the supernova remnant RCW103 are presented. This object is the prototype of a SNR shock heavily interacting with dense ISM (probably a molecular cloud). The spectra are dominated by prominent lines and show very little continuum at λ < 40 μm suggesting that the 12 and 25 μm IRAS emission from these types of remnant could be dominated by lines rather than continuum emission from warm dust heated by the shock as generally believed. The ISO data provide for the first time a simple and reliable estimate of the gas phase abundances of Si and Fe which are found to be close to solar relative to non refractory species such as Ne, S and Ar. This indicates that the shock is very effective in destroying the ISM dust and may therefore explain the absence of warm dust behind the shock. Like the optical Nickel lines, [NiII]6.63 μm yields Ni/Fe abundances a factor ≥ 10 above solar which we conclude results from a large underestimation of the computed Ni+ collision strengths. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号