首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   494篇
  免费   30篇
  国内免费   7篇
测绘学   8篇
大气科学   24篇
地球物理   176篇
地质学   198篇
海洋学   23篇
天文学   80篇
综合类   2篇
自然地理   20篇
  2023年   3篇
  2022年   4篇
  2021年   14篇
  2020年   21篇
  2019年   20篇
  2018年   22篇
  2017年   33篇
  2016年   49篇
  2015年   33篇
  2014年   38篇
  2013年   36篇
  2012年   21篇
  2011年   32篇
  2010年   25篇
  2009年   33篇
  2008年   33篇
  2007年   29篇
  2006年   14篇
  2005年   13篇
  2004年   8篇
  2003年   5篇
  2002年   7篇
  2001年   5篇
  2000年   6篇
  1999年   2篇
  1998年   5篇
  1997年   5篇
  1994年   2篇
  1993年   1篇
  1992年   1篇
  1991年   2篇
  1990年   2篇
  1989年   1篇
  1988年   2篇
  1987年   2篇
  1986年   1篇
  1982年   1篇
排序方式: 共有531条查询结果,搜索用时 62 毫秒
361.
List of papers from other journals  相似文献   
362.
Orientation and distribution of fractures in the Oligocene–Early Miocene Asmari Formation (a major reservoir rock of the Zagros petroleum system) were investigated in two anticlines of the Zagros fold-and-thrust belt. The Sim and Kuh-e-Asmari anticlines developed in the areas of the Zagros characterized by the occurrence and absence of Cambrian evaporites at the bottom of the stratigraphic pile, respectively. The aim was to outline major differences in terms of fracture spacing and saturation. Organic matter maturity and clay minerals-based geothermometers suggest that the depth of deformation for the top of the Asmari Formation in the Kuh-e-Asmari anticline was in the range of 1.5–2.7 km assuming a geothermal gradient of 22.5 °C/km. The Asmari Formation in the Sim anticline probably experienced a slightly deeper sedimentary burial (maximum 3 km) with a geothermal gradient of 20 °C/km. The spacing of fractures is generally 2–3 times larger (i.e., strain accommodated by fracturing is smaller) in the Sim anticline than in the Kuh-e-Asmari anticline. This is consistent with regional geological studies, analogue, and numerical models that suggest that thrust faults geometry and related folds are markedly different in the absence or presence of a weak decòllement (evaporites). The larger spacing in the Sim anticline is also consistent with higher temperature predicted for the Asmari Formation in this area. By contrast, the orientation of fractures with respect to the fold axes is the same in both anticlines. The fracture systems are rather immature in both anticlines. The amount and density of fractures in the twofolds are controlled by regional (occurrence/absence of salt and probably different burial), rather than local features (fold geometry).  相似文献   
363.
The present article illustrates a straightforward case of hydrothermal dolomitization, affecting Jurassic platform limestones of the Provençal and Subbriançonnais Domains (Maritime Alps, North-Western Italy). Dolomitized bodies are randomly distributed within the host limestone, and are commonly associated with dolomite vein networks and tabular bodies of dolomite-cemented breccias discordant with respect to bedding. Main dolomite types are a finely to medium-crystalline replacive dolomite and a coarsely-crystalline saddle dolomite occurring both as replacive and as cement. Stratigraphic constraints indicate that dolomitization occurred during the Cretaceous, in a shallow burial context, and was due to the circulation of hot fluids (temperature about 200 °C, as indicated by fluid inclusion microthermometry) through faults and related fracture networks. Hydrothermal dolomitization therefore indirectly documents a Cretaceous fault activity in the Maritime Alps segment of the European Tethyan passive margin.  相似文献   
364.
Abstract

In the Northern Apennines, the External Liguride (EL) units are interpreted as derived from the domain that joined the Ligure–Piemontese oceanic basin to the Adriatic plate continental margin. The EL units can be divided into two different groups according to the lithostratigraphic features of the basal complexes underlying the Upper Cretaceous–Lower Tertiary carbonate flysch (e.g. Helminthoid flysch). The first group includes the western successions characterized by Santonian–Campanian sedimentary melanges where slide blocks of lherzolitic mantle, gabbros, basalts, granulites, continental granitoids are represented. The second group is represented by the eastern successions where the Cenomanian–Campanian basal complexes mainly consist of sandstones and conglomerates where the mafic and ultramafic rocks are scarce or completely lacking. Their original substrate is represented by the Middle Triassic to Lower Cretaceous, mainly platform carbonate deposits, found as slices at the base of the eastern successions.

The stratigraphic features shown by the basal complexes allow the reconstruction of their source area that is assumed to be also representative for the pre-Upper Cretaceous setting. The proposed reconstruction suggests the occurrence in the EL domain of two distinct domains. The eastern domain was characterized by a thinned and faulted continental crust belonging to the Adriatic continental margin. The western domain was instead floored by subcontinental mantle associated with lower and upper continental crust, representing the ocean–continent transition. This setting is interpreted as the result of the opening of the Ligure–Piemontese oceanic basin by passive rifting, mainly developed by simple shear, asymmetric extension of the continental crust. © 2001 Éditions scientifiques et médicales Elsevier SAS  相似文献   
365.
Radiative control of surface temperature is a key characteristic of the martian environment and its low-density atmosphere. Here we show through meteorological modeling that surface temperature can be far from radiative equilibrium over numerous sloping terrains on Mars, where nighttime mesoscale katabatic winds impact the surface energy budget. Katabatic circulations induce both adiabatic atmospheric heating and enhancement of downward sensible heat flux, which then becomes comparable to radiative flux and acts to warm the ground. Through this mechanism, surface temperature can increase up to 20 K. One consequence is that warm signatures of surface temperature over slopes, observed through infrared spectrometry, cannot be systematically associated with contrasts of intrinsic soil thermal inertia. Apparent thermal inertia maps retrieved thus far possibly contain wind-induced structures. Another consequence is that surface temperature observations close to sloping terrains could allow the validation of model predictions for martian katabatic winds, provided contrasts in intrinsic thermal inertia can be ruled out. The thermal impact of winds is mostly discussed in this paper in the particular cases of Olympus Mons/Lycus Sulci and Terra Meridiani but is generally significant over any sloped terrains in low thermal inertia areas. It is even general enough to apply under daytime conditions, thereby providing a possible explanation for observed afternoon surface cooling, and to ice-covered terrains, thereby providing new insights on how winds could have shaped the present surface of Mars.  相似文献   
366.
The use of high resolution atmosphere–ocean coupled regional climate models to study possible future climate changes in the Mediterranean Sea requires an accurate simulation of the atmospheric component of the water budget (i.e., evaporation, precipitation and runoff). A specific configuration of the version 3.1 of the weather research and forecasting (WRF) regional climate model was shown to systematically overestimate the Mediterranean Sea water budget mainly due to an excess of evaporation (~1,450 mm yr?1) compared with observed estimations (~1,150 mm yr?1). In this article, a 70-member multi-physics ensemble is used to try to understand the relative importance of various sub-grid scale processes in the Mediterranean Sea water budget and to evaluate its representation by comparing simulated results with observed-based estimates. The physics ensemble was constructed by performing 70 1-year long simulations using version 3.3 of the WRF model by combining six cumulus, four surface/planetary boundary layer and three radiation schemes. Results show that evaporation variability across the multi-physics ensemble (~10 % of the mean evaporation) is dominated by the choice of the surface layer scheme that explains more than ~70 % of the total variance and that the overestimation of evaporation in WRF simulations is generally related with an overestimation of surface exchange coefficients due to too large values of the surface roughness parameter and/or the simulation of too unstable surface conditions. Although the influence of radiation schemes on evaporation variability is small (~13 % of the total variance), radiation schemes strongly influence exchange coefficients and vertical humidity gradients near the surface due to modifications of temperature lapse rates. The precipitation variability across the physics ensemble (~35 % of the mean precipitation) is dominated by the choice of both cumulus (~55 % of the total variance) and planetary boundary layer (~32 % of the total variance) schemes with a strong regional dependence. Most members of the ensemble underestimate total precipitation amounts with biases as large as 250 mm yr?1 over the whole Mediterranean Sea compared with ERA Interim reanalysis mainly due to an underestimation of the number of wet days. The larger number of dry days in simulations is associated with a deficit in the activation of cumulus schemes. Both radiation and planetary boundary layer schemes influence precipitation through modifications on the available water vapor in the boundary layer generally tied with changes in evaporation.  相似文献   
367.
Smaller glaciers (<0.5 km2) react quickly to environmental changes and typically show a large scatter in their individual response. Accounting for these ice bodies is essential for assessing regional glacier change, given their high number and contribution to the total loss of glacier area in mountain regions. However, studying small glaciers using traditional techniques may be difficult or not feasible, and assessing their current activity and dynamics may be problematic. In this paper, we present an integrated approach for characterizing the current behaviour of a small, avalanche‐fed glacier at low altitude in the Italian Alps, combining geomorphological, geophysical and high‐resolution geodetic surveying with a terrestrial laser scanner. The glacier is still active and shows a detectable mass transfer from the accumulation area to the lower ablation area, which is covered by a thick debris mantle. The glacier owes its existence to the local topo‐climatic conditions, ensured by high rock walls which enhance accumulation by delivering avalanche snow and reduce ablation by providing topographic shading and regulating the debris budget of the glacier catchment. In the last several years the glacier has displayed peculiar behaviour compared with most glaciers of the European Alps, being close to equilibrium conditions in spite of warm ablation seasons. Proportionally small relative changes have also occurred since the Little Ice Age maximum. Compared with the majority of other Alpine glaciers, we infer for this glacier a lower sensitivity to air temperature and a higher sensitivity to precipitation, associated with important feedback from increasing debris cover during unfavourable periods.  相似文献   
368.
In this paper we investigate the space and velocity distributions of old neutron stars (aged 109 to 1010?yr) in our Galaxy. Galactic old Neutron Stars (NSs) population fills a torus-like area extending to a few tens kiloparsecs above the galactic plane. The initial velocity distribution of NSs is not well known, in this work we adopt a three component initial distribution, as given by the contribution of kick velocities, circular velocities and Maxwellian velocities. For the spatial initial distribution we use a Γ function. We then use Monte Carlo simulations to follow the evolution of the NSs under the influence of the Paczyński Galactic gravitational potential. Our calculations show that NS orbits have a very large Galactic radial expansion and that their radial distribution peak is quite close to their progenitors’ one. We also study the NS vertical distribution and find that it can well be described by a double exponential low. Finally, we investigate the correlation of the vertical and radial distribution and study the radial dependence of scale-heights.  相似文献   
369.
Rainfall thresholds represent the main tool for the Italian Civil Protection System for early warning of the threat of landslides. However, it is well-known that soil moisture conditions at the onset of a storm event also play a critical role in triggering slope failures, especially in the case of shallow landslides. This study attempts to define soil moisture (estimated by using a soil water balance model) and rainfall thresholds that can be employed for hydrogeological risk prevention by the Civil Protection Decentrate Functional Centre (CFD) located in the Umbria Region (central Italy). Two different analyses were carried out by determining rainfall and soil moisture conditions prior to widespread landslide events that occurred in the Umbria Region and that are reported in the AVI (Italian Vulnerable Areas) inventory for the period 1991?C2001. Specifically, a ??local?? analysis that considered the major landslide events of the AVI inventory and an ??areal?? analysis subdividing the Umbria Region in ten sub-areas were carried out. Comparison with rainfall thresholds used by the Umbria Region CFD was also carried out to evaluate the reliability of the current procedures employed for landslide warning. The main result of the analysis is the quantification of the decreasing linear trend between the maximum cumulated rainfall values over 24, 36 and 48?h and the soil moisture conditions prior to landslide events. This trend provides a guideline to dynamically adjust the operational rainfall thresholds used for warning. Moreover, the areal analysis, which was aimed to test the operational use of the combined soil moisture?Crainfall thresholds showed, particularly for low values of rainfall, the key role of soil moisture conditions for the triggering of landslides. On the basis of these results, the Umbria Region CFD is implementing a procedure aimed to the near real-time estimation of soil moisture conditions based on the soil water balance model developed ad hoc for the region. In fact, it was evident that a better assessment of the initial soil moisture conditions would support and improve the hydrogeological risk assessment.  相似文献   
370.
Dam-break analysis is of great importance in mountain environment,especially where reservoirs are located upstream of densely populated areas and hydraulic hazard should be assessed for land planning purposes.Accordingly,there is a need to identify suitable operative tools which may differ from the ones used in flat flood-prone areas.This paper shows the results provided by a 1D and a 2D model based on the Shallow Water Equations(SWE) for dam-break wave propagation in alpine regions.The 1D model takes advantage of a topographic toolkit that includes an algorithm for pre-processing the Digital Elevation Model(DEM) and of a novel criterion for the automatic cross-section space refinement.The 2D model is FLO-2D,a commercial software widely used for flood routing in mountain areas.In order to verify the predictive effectiveness of these numerical models,the test case of the Cancano dam-break has been recovered from the historical study of De Marchi(1945),which provides a unique laboratory data set concerning the consequences of the potential collapse of the former Cancano dam(Northern Italy).The measured discharge hydrograph at the dam also provides the data to test a simplified method recently proposed for the characterization of the hydrograph following a sudden dam-break.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号