首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   71篇
  免费   0篇
地球物理   6篇
地质学   42篇
海洋学   23篇
  2022年   3篇
  2021年   5篇
  2020年   6篇
  2019年   8篇
  2018年   7篇
  2017年   4篇
  2016年   4篇
  2015年   6篇
  2014年   3篇
  2013年   4篇
  2012年   3篇
  2011年   1篇
  2010年   2篇
  2009年   4篇
  2008年   2篇
  2007年   4篇
  2006年   5篇
排序方式: 共有71条查询结果,搜索用时 15 毫秒
21.
The problem of incomparability of errors of 1st and 2nd kind (of false alarm and of missing of real danger) became solved after degrees of ecological disasters began to be expressed monetary. Requirements to reliability of monitoring systems (MS) signals are deduced from ratio of expenses of different kind. The sufficient condition of MS economic efficiency is resulted also. These results should be considered by working out specifications on MS.  相似文献   
22.
An insufficient number of dated native samples and indistinct magnetic anomalies in the Amerasian Basin prevent geophysicists from identifying the exact age of most of its structural elements. Due to this, it is impossible to gain an insight into the evolution of this vast region, which is highly promising in terms of its hydrocarbon potential. Therefore, the geological time of the formation of the structural elements composing the Amerasian Basin is determined either hypothetically or very loosely (for example, Late Cretaceous-Cenozoic). In order to more precisely estimate the time of formation of the structural elements within the Amerasian Basin, we applied the geothermal method, which is highly informative in terms of the age of the lithosphere, its thickness, and the evolution of the basin structures. Besides, this method provides far narrower time constraints for the formation of the structures compared to the geological data. Based on the thermal flow data, we have numerically calculated the age of the structural elements composing the Amerasian Basin: Podvodnikov Basin (97?C79 Ma), Makarov Basin (75?C61 Ma), Alpha-Mendeleev Ridge (97?C79 Ma), and Lomonosov Ridge (69?C57 Ma). The age of these structures derived from the geothermal data agrees with the estimates determined from the geological, geomagnetic, seismic, and radiometric data. Based on the age of the structures estimated from the thermal flow data and the analysis of the geological and geophysical evidence, conclusions are made concerning the genesis and character of formation of the Podvodnikov and Makarov basins and the Alpha-Mendeleev and Lomonosov ridges within the Amerasian Basin.  相似文献   
23.

An insufficient number of dated native samples and indistinct magnetic anomalies in the Amerasian Basin prevent geophysicists from identifying the exact age of most of its structural elements. Due to this, it is impossible to gain an insight into the evolution of this vast region, which is highly promising in terms of its hydrocarbon potential. Therefore, the geological time of the formation of the structural elements composing the Amerasian Basin is determined either hypothetically or very loosely (for example, Late Cretaceous-Cenozoic). In order to more precisely estimate the time of formation of the structural elements within the Amerasian Basin, we applied the geothermal method, which is highly informative in terms of the age of the lithosphere, its thickness, and the evolution of the basin structures. Besides, this method provides far narrower time constraints for the formation of the structures compared to the geological data. Based on the thermal flow data, we have numerically calculated the age of the structural elements composing the Amerasian Basin: Podvodnikov Basin (97–79 Ma), Makarov Basin (75–61 Ma), Alpha-Mendeleev Ridge (97–79 Ma), and Lomonosov Ridge (69–57 Ma). The age of these structures derived from the geothermal data agrees with the estimates determined from the geological, geomagnetic, seismic, and radiometric data. Based on the age of the structures estimated from the thermal flow data and the analysis of the geological and geophysical evidence, conclusions are made concerning the genesis and character of formation of the Podvodnikov and Makarov basins and the Alpha-Mendeleev and Lomonosov ridges within the Amerasian Basin.

  相似文献   
24.
Doklady Earth Sciences - The paper presents data obtained during the 69th and 72nd expeditions of the research vessel Akademik Mstislav Keldysh (2017, 2018). A mechanism of methane discharge that...  相似文献   
25.
Kononov  M. V.  Lobkovsky  L. I. 《Geotectonics》2019,53(6):658-674
Geotectonics - The article considers the history of seafloor spreading of the Eurasian Basin. The sharp decline in the spreading rate in the Eocene about 46 Ma was revealed, which is recorded in...  相似文献   
26.
The structure of the Caribbean region testifies to the extremely unstable condition of the terrestrial crust of this intercontinental and simultaneously interoceanic area. In the recent geological epoch, the Caribbean region is represented by a series of structural elements, the main of which are the Venezuelan and Colombian deep-sea suboceanic depressions, the Nicaraguan Rise, and the Greater and Lesser Antilles bordering the Caribbean Sea in the north and east. There are 63 sedimentary basins in the entire Caribbean region. However, only the Venezuelan and Colombian basins, the Miskito Basin in Nicaragua, and the northern and eastern shelves of the Antilles, Paria Bay, Barbodos-Tobago, and Grenada basins are promising in terms of oil-and-gas bearig. In the Colombian Basin, the southwestern part, located in the rift zone of the Gulf of Uraba, is the most promising. In the Venezuelan Basin, possible oil-and-gas-bearing basins showing little promise are assumed to be in the northern and eastern margins. The main potential of the eastern Caribbean region is attributed to the southern margin, at the shelf zone of which are the Tokuyo-Bonaire, Tuy-Cariaco, Margarita, Paria Bay, Barbados–Tobago, and Grenada oil-and-gas-bearing basins. The rest of the deepwater depressions of the Caribbean Sea show little promise for hydrocarbon research due to the small thickness of the deposits, their flat bedding, and probably a lack of fluid seals.  相似文献   
27.
The segmented structure of the Karpinsky Ridge is determined by NE-trending transverse strikeslip faults with offsets of approximately 30–40 km. The newly recognized Pribrezhny Fault and the well-known Agrakhan Fault are the largest. A new correlation scheme for structural elements of the ridge’s eastern segment and its underwater continuation is proposed with account of offset along the Pribrezhny Fault. According to this scheme, the Semenovsky Trough rather than the Dzhanai Trough is an onshore continuation of the underwater Zyudevsky Trough. The uplift located south of the Zyudevsky Trough is correlated with the Promyslovy-Tsubuk Swell offset along the Pribrezhny Fault. In turn, this uplift is displaced along the right-lateral strike-slip fault that coincides with the Agrakhan Fault. The transverse faults were formed during the Early Permian collision related to the closure of the basin, which was presumably underlain by the oceanic crust. The faults were active during the Early Triassic rifting and Late Triassic inversion. Judging from the map of the surface of the Maikop sediments, the Agrakhan Fault does not cross the Terek-Caspian Trough. Bending arcwise, the fault joins a system of right-lateral strike-slip faults that border the Daghestan Wedge in the east. A system of rightlateral strike-slip faults may also be traced along the western coast of the Caspian Sea. The Agrakhan Fault as a northern element of this system functioned mostly in the Late Paleozoic-Early Mesozoic in connection with the formation of the fold-thrust structure of the Karpinsky Ridge. In the east the faults of the southern segment bound the Caucasus syntaxis of the Alpine Belt; they have retained their activity to the present day.  相似文献   
28.
The within-Iranian backarc basins, including the largest Sebzawar Basin, opened in the Mid-Cretaceous. Spreading in this basin was completed by the end of the Cretaceous. The basin closed in the Eocene with the formation of subduction zones and volcanic-plutonic belts. Data on North Afghanistan and the Central Pamirs have allowed us to reconstruct the eastern continuation of the Sebzawar Basin up to the west of the Central Pamirs. No fragments of oceanic crust are retained in Afghanistan and the Pamirs, but by analogy with the Sebzawar Basin, thick Paleogene flysch sequences and volcanic-plutonic complexes indicate setting of the active margin and subduction. It is suggested that the belt of mantle seismicity that extends for 550 km to the south of the Central Pamirs is related to the plunging and deformation of the lithosphere once underlying the Cretaceous-Paleogene basin. The extremely vigorous seismicity of the Hindu Kush megasource at the western termination of the seismic belt is caused by a number of specific tectonic features that predetermined the early onset of plunging of the subducted sheet (slab). In the megasource, the slab sank to a depth of 300 km and became vertical; its active deformation has proceeded up to the present. In the eastern part of the seismic belt, the slab started to plunge much later and therefore has retained a gentle slope, so that the depth of the hypocenters is shallower (down to 200 km), and earthquakes are less strong.  相似文献   
29.
Requirements for signals’ reliability of monitoring systems (with respect to the errors of the 1st and 2nd kinds, i.e., false alarms and skipping of danger) are deduced from the ratio of expenditures of different kinds (of exploitation expenses and losses due to accidents). The expressions obtained in the research may be used for economic foundations (and optimization) of specifications for monitoring systems. In cases when optimal parameters are not available, the sufficient condition of monitoring systems economical efficiency is presented.  相似文献   
30.
The initial configuration of the Arctida Craton was reconstructed from a complex geological-geophysical analysis of the anomalous magnetic field of the Canadian Basin in the Arctic Ocean. The modern version of the bottom geochronology indicates that the first stage of the formation of the Canadian Basin in the Arctic Ocean was related to extension and rifting in the Arctida Craton in the Kimmeridgian. The transformation of rifting into spreading presumably occurred during chron M22Ar (151 Ma). The second stage was related to the opening of the Canadian Basin within chrons M22Ar-M19 (151–145 Ma). The next stage of the opening of the basin was marked by a 100-km jump of the spreading axis to the east. This stage ended after chron M5 (130 Ma ago). At the fourth (Late Cretaceous) stage, extension spanned the Southern Canadian Basin with the formation of large igneous province.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号