The Middle Miocene Monowai Formation represents a gravel delta that prograded south into a flysch basin complex developed along the Moonlight Tectonic Zone, southern New Zealand. The delta-slope environment was characterized by a conglomeratic sequence up to 500 m thick. Most of the gravel was moved downslope by mass-transport processes. A complete spectrum exists from synsedimentary slide sheets (up to 10 m thick and 100 m long) that retain pre-sliding sedimentary structures, to more mature mass-transported sediment types in which all original structures have been destroyed. The most distal deposits include ungraded homogeneous pebble conglomerates up to 3 m thick. Some of the more mature redeposited conglomerate-sand-mud units (X–Y–Z sequences) are between 2 and 10 m thick; they comprise a basal X-division of bouldery conglomerate, a middle Y-division of pebbly mudstone or pebbly sandstone, and an upper Z-division of hydroplastically folded mudstone. Though X–Y–Z sequences may have been deposited from very proximal turbidity or fluxoturbidity currents, inertia-flow emplacement seems more likely. An inertia-flow mode of emplacement also seems most probable for the other redeposited sediment types described from the Monowai Formation. 相似文献
Zircon fission track (ZFT), apatite fission track (AFT) and (U–Th)/He thermochronometric data are used to reconstruct the Cenozoic exhumation history of the South China continental margin. A south to north sample transect from coast to continental interior yielded ZFT ages between 116.6 ± 4.7 Ma and 87.3 ± 4.0, indicating that by the Late Cretaceous samples were at depths of 5–6 km in the upper crust. Apatite FT ages range between 60.9 ± 3.6 and 37.3 ± 2.3 Ma with mean track lengths between 13.26 ± 0.16 µm and 13.95 ± 0.19 µm whilst AHe ages are marginally younger 47.5 ± 1.9–15.3 ± 0.5 Ma. These results show the sampled rocks resided in the top 1–1.5 km of the crust for most of the Cenozoic. Thermal history modeling of the combined FT and (U–Th)/He datasets reveal a common three stage cooling history which differed systematically in timing inland away from the rifted margin. 1) Initial phase of rapid cooling that youngs to the north, 2) a period of relative (but not perfect) thermal stasis at ~ 70–60 °C which increases in duration from the south to the north; 3) final-stage cooling to surface temperatures that initiated in all samples between 15 and 10 Ma. The timing and pattern of rock uplift and erosion does not fit with conventional passive margin landscape models that require youngest exhumation ages to be concentrated at or close to the rifted margin. The history of South China margin is more complex aided by weakened crust from the active margin period that immediately preceded rifting and opening of the South China Sea. This rheological inheritance created a transition zone of steeply thinned crust that served as a flexural filter disconnecting the northern margin of the South China block and site of active rifting to the south. Consequently whilst the South China margin displays many features of a rifted continental margin its exhumation history does not conform to conventional images of a passive margin. 相似文献
New experiments on Mt. Burnet dunite have been carried out to evaluate the effects of important physical parameters on recrystallized-grain size and subgrain size in olivine deforming under steady-state conditions. The experiments, done under both wet and dry conditions in a Griggs solid-pressure-medium apparatus, were conducted in constant strain rate, constant stress and stress relaxation modes at 10 kbar confining pressure, temperatures from 1000°C to 1300°C, strain rates from 10−4 to 10−8/sec and stress differences of from 0.5 to 10 kbar. For dunite deformed under wet conditions, recrystallized-grain size is slightly temperature-dependent but under dry conditions it is only stress-dependent with D = 137 σ−1.27 for D in μm and σ in kbar. Subgrain sizes also depend only on stress; for the dry experiments d = 28 σ−0.62 and for the wet ones d = 15 σ−0.69. Subgrain sizes decrease with increasing stress but do not increase with decreasing stress and hence record only maximum stress levels. Recrystallized-grain sizes adjust to both increasing and decreasing stress levels, at minimal strains and times, and thus record the stress history. Because of this and of the inherent stability of recrystallized grains, this technique is regarded as more reliable than the subgrain size and free dislocation density and curvature methods for estimating stress magnitudes in tectonites having deformed in the steadystate. 相似文献
Detrimental effects of engineering works on the coast and a wish to conserve parts of the coastline have increased realization among coastal managers of the need to examine shoreline problems and proposals for protection in a wider spatial context than the site itself and over a longer time scale than the past few years. This paper outlines the approach taken in one region of the United Kingdom, the central south coast of England, to provide that wider perspective. Authorities responsible for coastal protection and sea defenses formed a coastal group, which, among other activities, commissioned research aimed at providing a greater understanding on which to base shoreline management decisions. A major project undertaken was a sediment transport study in which all existing information relating to coastal sediment processes in the region was collated and analyzed. All inputs, flows, and outputs of sediment were documented. Links between processes were examined for each part of the region. Finally, nine littoral cells of sediment circulation were identified and were suggested as forming a framework for shoreline management. The methods of compilation and analysis are outlined here and are exemplified for one area in the region. The approach is recommended as a cost-effective basis for strategic management of the coast in developed regions. 相似文献
This paper examines the drained bearing response of circular footings resting on structured soil deposits. Numerical simulations have been carried out using a finite element formulation of the Structured Cam Clay model. A parametric study was conducted by varying the parameters that govern the behaviour of structured soils and guidelines are given for designers to identify when effects of the soil structure are important. Under fully drained conditions, deformation within the structured soil supporting the footing usually occurs as a local or punching shear failure due to high compressibility of the structured soil and the mobilised bearing pressure increases with the footing movement, without reaching an ultimate value. A novel approximate method is presented to obtain the load–displacement response of a rigid circular footing resting on the surface of a structured soil deposit. This requires the properties of the soil in the reconstituted state and two additional parameters, which govern the natural structure of the soil. The proposed method has been applied to a published case study, where plate load test results are given for rigid circular steel plates resting on structured soil deposits. Fair agreement is observed between the computed and experimental results, suggesting the approximate method may be useful in design studies of foundations on structured soil deposits. 相似文献
Sheeting joints are extensive fractures that typically develop parallel to natural slopes. Embryonic sheeting joints initially
constitute channels for water flow and then become the focus for weathering and sediment infill accompanied by progressive
deterioration and dilation. Slabs of rock fail along them periodically because of their adverse orientation and long persistence.
They are however rough and wavy and these characteristics contribute highly to their shear strength and improve their stability.
This paper reviews several landslide case histories and on the basis of these provides guidelines for characterising sheeting
joints and determining their shear strength. Engineering options for stabilising sheeting joints in natural and cut slope
configurations are then examined with reference to case examples. 相似文献
This paper presents an analysis of two large rock toppling/sliding events which occurred in January 2014 and February 2019 at the Cliets unstable slope (Savoie, French Alps). To understand the mechanism involved and its control by external forcings, a multi-technique analysis approach is used combining geological observations, meteorological data analysis, topographic measurements and simple physical modeling. The pre-failure stage of the events is more particularly analyzed. No direct relationships are found between triggering factors and surface motion though a kinematics analysis highlights the transition toppling-sliding. It showed that, at first order, this transition occurred 4 years before the first failure of 2014, while it happened 2 months before the second failure of 2019. From this date, the environment is considered like a block sliding on an inclined plane. By applying a frictional model (Helmstetter et al. in Journal of Geophysical Research: Solid Earth 109(B2), 2004), we illustrated that the two events belong to an unstable velocity-weakening sliding regime. The time to failure (Voight in Science 243(4888):200–203, 1989) is forecasted with the model, and the results are consistent with the observations. They confirm that the gravitational factor is predominant over the triggering factors for the two events.