首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5319篇
  免费   542篇
  国内免费   157篇
测绘学   238篇
大气科学   600篇
地球物理   1946篇
地质学   2130篇
海洋学   298篇
天文学   365篇
综合类   187篇
自然地理   254篇
  2022年   6篇
  2021年   17篇
  2020年   5篇
  2019年   9篇
  2018年   433篇
  2017年   376篇
  2016年   250篇
  2015年   149篇
  2014年   115篇
  2013年   118篇
  2012年   648篇
  2011年   424篇
  2010年   120篇
  2009年   135篇
  2008年   126篇
  2007年   116篇
  2006年   132篇
  2005年   836篇
  2004年   875篇
  2003年   654篇
  2002年   182篇
  2001年   70篇
  2000年   44篇
  1999年   16篇
  1998年   8篇
  1997年   22篇
  1996年   13篇
  1991年   11篇
  1990年   12篇
  1989年   6篇
  1987年   5篇
  1983年   3篇
  1980年   7篇
  1979年   3篇
  1978年   4篇
  1976年   4篇
  1975年   7篇
  1974年   4篇
  1973年   3篇
  1969年   2篇
  1968年   2篇
  1965年   3篇
  1963年   2篇
  1961年   2篇
  1959年   2篇
  1955年   2篇
  1954年   2篇
  1951年   2篇
  1948年   2篇
  1934年   2篇
排序方式: 共有6018条查询结果,搜索用时 15 毫秒
81.
The highest rainfall totals (912.2 mm) and the largest number of raindays (133 days), since 1958, were recorded in Thessaloniki during the year of 2014. Extreme precipitation heights were also observed on a seasonal, monthly and daily basis. The examined year presented the highest daily rainfall intensity, the maximum daily precipitation and the largest number of heavy precipitation days (greater than 10 mm), and it also exceeded the previous amounts of precipitation of very wet (95th percentile) and extremely wet (99th percentile) days. According to the automatic circulation type classification scheme that was used, it was found that during this exceptionally wet year, the frequency of occurrence of cyclonic types at the near surface geopotential level increases, while the same types decreased at a higher atmospheric level (500 hPa). The prevailing type was type C which is located at the centre of the study area (Greece), but several other cyclonic types changed during this year not only their frequency but also their percentage of rainfall as well as their daily precipitation intensity. It should be highlighted that these findings differentiated on the seasonal-scale analysis. Moreover, out of the three teleconnection patterns that were examined (Scandinavian Pattern, Eastern Mediterranean Teleconnection Pattern and North Sea-Caspian Pattern), the Scandinavian one (SCAND) was detected during the most of the months of 2014 meaning that it was highly associated with intense precipitation over Greece.  相似文献   
82.
The resolution of General Circulation Models (GCMs) is too coarse for climate change impact studies at the catchment or site-specific scales. To overcome this problem, both dynamical and statistical downscaling methods have been developed. Each downscaling method has its advantages and drawbacks, which have been described in great detail in the literature. This paper evaluates the improvement in statistical downscaling (SD) predictive power when using predictors from a Regional Climate Model (RCM) over a GCM for downscaling site-specific precipitation. Our approach uses mixed downscaling, combining both dynamic and statistical methods. Precipitation, a critical element of hydrology studies that is also much more difficult to downscale than temperature, is the only variable evaluated in this study. The SD method selected here uses a stepwise linear regression approach for precipitation quantity and occurrence (similar to the well-known Statistical Downscaling Model (SDSM) and called SDSM-like herein). In addition, a discriminant analysis (DA) was tested to generate precipitation occurrence, and a weather typing approach was used to derive statistical relationships based on weather types, and not only on a seasonal basis as is usually done. The existing data record was separated into a calibration and validation periods. To compare the relative efficiency of the SD approaches, relationships were derived at the same sites using the same predictors at a 300km scale (the National Center for Environmental Prediction (NCEP) reanalysis) and at a 45km scale with data from the limited-area Canadian Regional Climate Model (CRCM) driven by NCEP data at its boundaries. Predictably, using CRCM variables as predictors rather than NCEP data resulted in a much-improved explained variance for precipitation, although it was always less than 50?% overall. For precipitation occurrence, the SDSM-like model slightly overestimated the frequencies of wet and dry periods, while these were well-replicated by the DA-based model. Both the SDSM-like and DA-based models reproduced the percentage of wet days, but the wet and dry statuses for each day were poorly downscaled by both approaches. Overall, precipitation occurrence downscaled by the DA-based model was much better than that predicted by the SDSM-like model. Despite the added complexity, the weather typing approach was not better at downscaling precipitation than approaches without classification. Overall, despite significant improvements in precipitation occurrence prediction by the DA scheme, and even going to finer scales predictors, the SD approach tested here still explained less than 50?% of the total precipitation variance. While going to even smaller scale predictors (10–15?km) might improve results even more, such smaller scales would basically transform the direct outputs of climate models into impact models, thus negating the need for statistical downscaling approaches.  相似文献   
83.
Specifying physically consistent and accurate initial conditions is one of the major challenges of numerical weather prediction (NWP) models. In this study, ground-based global positioning system (GPS) integrated water vapor (IWV) measurements available from the International Global Navigation Satellite Systems (GNSS) Service (IGS) station in Bangalore, India, are used to assess the impact of GPS data on NWP model forecasts over southern India. Two experiments are performed with and without assimilation of GPS-retrieved IWV observations during the Indian winter monsoon period (November–December, 2012) using a four-dimensional variational (4D-Var) data assimilation method. Assimilation of GPS data improved the model IWV analysis as well as the subsequent forecasts. There is a positive impact of ~10 % over Bangalore and nearby regions. The Weather Research and Forecasting (WRF) model-predicted 24-h surface temperature forecasts have also improved when compared with observations. Small but significant improvements were found in the rainfall forecasts compared to control experiments.  相似文献   
84.
Using climate models with high performance to predict the future climate changes can increase the reliability of results. In this paper, six kinds of global climate models that selected from the Coupled Model Intercomparison Project Phase 5 (CMIP5) under Representative Concentration Path (RCP) 4.5 scenarios were compared to the measured data during baseline period (1960–2000) and evaluate the simulation performance on precipitation. Since the results of single climate models are often biased and highly uncertain, we examine the back propagation (BP) neural network and arithmetic mean method in assembling the precipitation of multi models. The delta method was used to calibrate the result of single model and multimodel ensembles by arithmetic mean method (MME-AM) during the validation period (2001–2010) and the predicting period (2011–2100). We then use the single models and multimodel ensembles to predict the future precipitation process and spatial distribution. The result shows that BNU-ESM model has the highest simulation effect among all the single models. The multimodel assembled by BP neural network (MME-BP) has a good simulation performance on the annual average precipitation process and the deterministic coefficient during the validation period is 0.814. The simulation capability on spatial distribution of precipitation is: calibrated MME-AM > MME-BP > calibrated BNU-ESM. The future precipitation predicted by all models tends to increase as the time period increases. The order of average increase amplitude of each season is: winter > spring > summer > autumn. These findings can provide useful information for decision makers to make climate-related disaster mitigation plans.  相似文献   
85.
This special issue of Climatic Change describes an effort to improve methodology for integrated assessment of impacts and consequences of climatic change. Highlights of the seven foregoing Parts (papers) that constitute this special issue are summarized here. The methodology developed involves construction of scenarios of climate change that are used to drive individual sectoral models for simulating impacts on crop production, irrigation demand, water supply and change in productivity and geography of unmanaged ecosystems. Economic impacts of the changes predicted by integrating the results of the several sectoral simulation models are calculated through an agricultural land-use model. While these analyses were conducted for the conterminous United States alone, their global implications are also considered in this summary as is the need for further improvements in integrated assessment methodology.  相似文献   
86.
The urban heat island (UHI) is a well-documented effect of urbanization on local climate, identified by higher temperatures compared to surrounding areas, especially at night and during the warm season. The details of a UHI are city-specific, and microclimates may even exist within a given city. Thus, investigating the spatiotemporal variability of a city’s UHI is an ongoing and critical research need. We deploy ten weather stations across Knoxville, Tennessee, to analyze the city’s UHI and its differential impacts across urban neighborhoods: two each in four neighborhoods, one in more dense tree cover and one in less dense tree cover, and one each in downtown Knoxville and Ijams Nature Center that serve as control locations. Three months of temperature data (beginning 2 July 2014) are analyzed using paired-sample t tests and a three-way analysis of variance. Major findings include the following: (1) Within a given neighborhood, tree cover helps negate daytime heat (resulting in up to 1.19 °C lower maximum temperature), but does not have as large of an influence on minimum temperature; (2) largest temperature differences between neighborhoods occur during the day (0.38–1.16 °C difference), but larger differences between neighborhoods and the downtown control occur at night (1.04–1.88 °C difference); (3) presiding weather (i.e., air mass type) has a significant, consistent impact on the temperature in a given city, and lacks the differential impacts found at a larger-scale in previous studies; (4) distance from city center does not impact temperature as much as land use factors. This is a preliminary step towards informing local planning with a scientific understanding of how mitigation strategies may help minimize the UHI and reduce the effects of extreme weather on public health and well-being.  相似文献   
87.
We investigate the mesoscale dynamics of the mistral through the wind profiler observations of the MAP (autumn 1999) and ESCOMPTE (summer 2001) field campaigns. We show that the mistral wind field can dramatically change on a time scale less than 3 hours. Transitions from a deep to a shallow mistral are often observed at any season when the lower layers are stable. The variability, mainly attributed in summer to the mistral/land–sea breeze interactions on a 10-km scale, is highlighted by observations from the wind profiler network set up during ESCOMPTE. The interpretations of the dynamical mistral structure are performed through comparisons with existing basic theories. The linear theory of R. B. Smith [Advances in Geophysics, Vol. 31, 1989, Academic Press, 1–41] and the shallow water theory [Schär, C. and Smith, R. B.: 1993a, J. Atmos. Sci. 50, 1373–1400] give some complementary explanations for the deep-to-shallow transition especially for the MAP mistral event. The wave breaking process induces a low-level jet (LLJ) downstream of the Alps that degenerates into a mountain wake, which in turn provokes the cessation of the mistral downstream of the Alps. Both theories indicate that the flow splits around the Alps and results in a persistent LLJ at the exit of the Rhône valley. The LLJ is strengthened by the channelling effect of the Rhône valley that is more efficient for north-easterly than northerly upstream winds despite the north–south valley axis. Summer moderate and weak mistral episodes are influenced by land–sea breezes and convection over land that induce a very complex interaction that cannot be accurately described by the previous theories.  相似文献   
88.
To study the land surface and atmospheric meteorological characteristics of non-uniform underlying surfaces in the semi-arid area of Northeast China, we use a “High-Resolution Assimilation Dataset of the water-energy cycle in China (HRADC)”. The grid points of three different underlying surfaces were selected, and their meteorological elements were averaged for each type (i.e., mixed forest, grassland, and cropland). For 2009, we compared and analyzed the different components of leaf area index (LAI), soil temperature and moisture, surface albedo, precipitation, and surface energy for various underlying surfaces in Northeast China. The results indicated that the LAI of mixed forest and cropland during the summer is greater than 5 m2 m?2 and below 2.5 m2 m?2 for grassland; in the winter and spring seasons, the Green Vegetation Fraction (GVF) is below 30%. The soil temperature and moisture both vary greatly. Throughout the year, the mixed forest is dominated by latent heat evaporation; in grasslands and croplands, the sensible heat flux and the latent heat flux are approximately equal, and the GVF contributed more to latent heat flux than sensible heat flux in the summer. This study compares meteorological characteristics between three different underlying surfaces of the semi-arid area of Northeast China and makes up for the insufficiency of purely using observations for the study. This research is important for understanding the water-energy cycle and transport in the semi-arid area.  相似文献   
89.
Verification of Carbon Sink Assessment: Can We Exclude Natural Sinks?   总被引:1,自引:0,他引:1  
Any human-induced terrestrial sink is susceptible to the effects of elevated atmospheric CO2 concentration, nitrogen deposition, climate variability and other natural or indirect human-induced factors. It has been suggested in climate negotiations that the effects of these factors should be excluded from estimates of carbon sequestration used to meet the emission reduction commitments under the Kyoto Protocol. This paper focuses on the methodologies for factoring out the effects of atmospheric and climate variability/change. We estimate the relative magnitude of the non-human induced effects by using two biosphere models and discuss possibilities for narrowing estimate uncertainty.  相似文献   
90.
Extreme weather conditions can strongly affect agricultural production, with negative impacts that can at times be detected at regional scales. In France, crop yields were greatly influenced by drought and heat stress in 2003 and by extremely wet conditions in 2007. Reported regional maize and wheat yields where historically low in 2003; in 2007 wheat yields were lower and maize yields higher than long-term averages. An analysis with a spatial version (10?×?10?km) of the EPIC crop model was tested with regards to regional crop yield anomalies of wheat and maize resulting from extreme weather events in France in 2003 and 2007, by comparing simulated results against reported regional crops statistics, as well as using remotely sensed soil moisture data. Causal relations between soil moisture and crop yields were specifically analyzed. Remotely sensed (AMSR-E) JJA soil moisture correlated significantly with reported regional crop yield for 2002–2007. The spatial correlation between JJA soil moisture and wheat yield anomalies was positive in dry 2003 and negative in wet 2007. Biweekly soil moisture data correlated positively with wheat yield anomalies from the first half of June until the second half of July in 2003. In 2007, the relation was negative the first half of June until the second half of August. EPIC reproduced observed soil dynamics well, and it reproduced the negative wheat and maize yield anomalies of the 2003 heat wave and drought, as well as the positive maize yield anomalies in wet 2007. However, it did not reproduce the negative wheat yield anomalies due to excessive rains and wetness in 2007. Results indicated that EPIC, in line with other crop models widely used at regional level in climate change studies, is capable of capturing the negative impacts of droughts on crop yields, while it fails to reproduce negative impacts of heavy rain and excessively wet conditions on wheat yield, due to poor representations of critical factors affecting plant growth and management. Given that extreme weather events are expected to increase in frequency and perhaps severity in coming decades, improved model representation of crop damage due to extreme events is warranted in order to better quantify future climate change impacts and inform appropriate adaptation responses.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号