首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1474篇
  免费   44篇
  国内免费   14篇
测绘学   25篇
大气科学   129篇
地球物理   290篇
地质学   514篇
海洋学   108篇
天文学   345篇
自然地理   121篇
  2022年   9篇
  2021年   18篇
  2020年   17篇
  2019年   21篇
  2018年   25篇
  2017年   28篇
  2016年   47篇
  2015年   28篇
  2014年   47篇
  2013年   84篇
  2012年   45篇
  2011年   74篇
  2010年   58篇
  2009年   101篇
  2008年   82篇
  2007年   80篇
  2006年   83篇
  2005年   69篇
  2004年   52篇
  2003年   40篇
  2002年   60篇
  2001年   35篇
  2000年   29篇
  1999年   30篇
  1998年   38篇
  1997年   27篇
  1996年   10篇
  1995年   14篇
  1994年   21篇
  1993年   10篇
  1992年   8篇
  1991年   8篇
  1990年   17篇
  1989年   14篇
  1988年   16篇
  1987年   15篇
  1986年   13篇
  1985年   16篇
  1984年   8篇
  1983年   8篇
  1982年   12篇
  1981年   7篇
  1980年   11篇
  1979年   11篇
  1978年   7篇
  1977年   7篇
  1976年   9篇
  1975年   6篇
  1972年   12篇
  1971年   6篇
排序方式: 共有1532条查询结果,搜索用时 16 毫秒
21.
22.
Thermodynamic calculations and Gibbs free energy minimization computer experiments strongly support the hypothesis that kerogen maturation and oil generation are inevitable consequences of oxidation/reduction disproportionation reactions caused by prograde metamorphism of hydrocarbon source rocks with increasing depth of burial.These experiments indicate that oxygen and hydrogen are conserved in the process.Accordingly, if water is stable and present in the source rock at temperatures ?25 but ?100 °C along a typical US Gulf Coast geotherm, immature (reduced) kerogen with a given atomic hydrogen to carbon ratio (H/C) melts incongruently with increasing temperature and depth of burial to produce a metastable equilibrium phase assemblage consisting of naphthenic/biomarker-rich crude oil, a type-II/III kerogen with an atomic hydrogen/carbon ratio (H/C) of ∼1, and water. Hence, this incongruent melting process promotes diagenetic reaction of detritus in the source rock to form authigenic mineral assemblages.However, in the water-absent region of the system CHO (which is extensive), any water initially present or subsequently entering the source rock is consumed by reaction with the most mature kerogen with the lowest H/C it encounters to form CO2 gas and a new kerogen with higher H/C and O/C, both of which are in metastable equilibrium with one another.This hydrolytic disproportionation process progressively increases both the concentration of the solute in the aqueous phase, and the oil generation potential of the source rock; i.e., the new kerogen can then produce more crude oil.Petroleum is generated with increasing temperature and depth of burial of hydrocarbon source rocks in which water is not stable in the system CHO by a series of irreversible disproportionation reactions in which kerogens with higher (H/C)s melt incongruently to produce metastable equilibrium assemblages consisting of crude oil, CO2 gas, and a more mature (oxidized) kerogen with a lower H/C which in turn melts incongruently with further burial to produce more crude oil, CO2 gas, and a kerogen with a lower H/C and so forth.The petroleum generated in the process progresses from heavy naphthenic crude oils at low temperatures to mature petroleum at ∼150 °C. For example, the results of Computer Experiment 27 (see below) indicate that the overall incongruent melting reaction in the water-absent region of the system C-H-O at 150 °C and a depth of ∼4.3 km of an immature type-II/III kerogen with a bulk composition represented by C292H288O12(c) to produce a mature (oxidized) kerogen represented by C128H68O7(c), together with a typical crude oil with an average metastable equilibrium composition corresponding to C8.8H16.9 (C8.8H16.9(l)) and CO2 gas (CO2(g)) can be described by writing
(A)  相似文献   
23.
Epithermal precious- and base-metal deposits are diverse, reflecting the different tectonic, igneous and structural settings in which they occur, the complexities of their local setting, and the many processes involved in their formation. Most epithermal deposits form at shallow crustal levels where abrupt changes in physical and chemical conditions result in metal deposition and attendant hydrothermal alteration. The principal factors that influence the conditions prevailing in the epithermal environment, and which ultimately determine the sites and character of mineralization, include: geology (structure, stratigraphy, intrusions and rock type, which affect the style and degree of permeability and the reactivity of the host); pressure and temperature (which in the epithermal environment are related on the boiling point with depth curve); hydrology (the relationship between permeability and topography which governs fluid flow, and discharge/recharge characteristics, as well as access of steam-heated waters); chemistry of the mineralizing fluid (which determines the metal-carrying capacity, as well as the associated vein and alteration assemblage); and syn-hydrothermal development of permeability and/or changes in hydraulic gradients.Many attempts have been made to classify epithermal deposits based on mineralogy and alteration, the host rocks, deposit form, genetic models, and standard deposits. All have their strengths and weaknesses. We prefer a simple approach using the fundamental fluid chemistry (high or low sulfidation, reflecting relatively oxidized or reduced conditions, respectively) as readily inferred from vein and alteration mineralogy and zoning, together with the form of the deposit, and using comparative examples to clarify the character of the deposit.Guidelines for exploration vary according to the scale at which work is conducted, and are commonly constrained by a variety of local conditions. On a regional scale the tectonic, igneous and structural settings can be used, together with assessment of the depth of erosion, to select areas for project area scale exploration. At project area scale, direct (i.e. geochemical) or indirect guidelines may be used. Indirect methods involve locating and interpreting hydrothermal alteration as a guide to ore, with the topographic and hydrologic reconstruction of the system being of high priority. These pursuits may involve mineralogic, structural, geophysical or remote sensing methods. On a prospect scale, both direct and indirect methods may be used; however, they can only be effective in the framework of a sound conceptual understanding of the processes that occur in the epithermal environment, and the signatures they leave.  相似文献   
24.
25.
The Pilot Small Telescope Network (PSTN) is a state‐of the art system of easily replicable and scalable hardware, software, servers, eXtensible Markup Language (XML) protocols, and network middleware connecting and developing a pilot array of robotic telescopes to one another and the user community. The PSTN is a developmental project that will allow growing access to these telescopes, and make available data to faculty, students and others in an environment of collaboration. The underlying goal of the PSTN is to broaden the quantity and quality of astronomical education and research, particularly with a focus on traditionally underserved populations. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
26.
Survey and Geographic Information System (GIS) data analysis describes the relative influence of biophysical and human variables on site choices made by marine farmers in New Zealand. Community conflicts have grown in importance in determining farm location and different government planning strategies leave distinct signature patterns. Recent legislation empowers local governments to choose among three strategies for future regional aquaculture development. This paper suggests each strategy could result in different spatial outcomes. Simulation modelling of the type described here can provide a better understanding of farmer responses to management approaches and the range of futures that could result from planning choices made today.  相似文献   
27.
Large organic falls to the benthic environment, such as dead wood or whale bones, harbour organisms relying on sulfide-oxidizing symbionts. Nothing is known however, concerning sulfide enrichment at the wood surface and its relation to wood colonization by sulfide-oxidizing symbiotic organisms.In this study we combined in situ hydrogen sulfide and pH measurements on sunken wood, with associated fauna microscopy analyses in a tropical mangrove swamp. This shallow environment is known to harbour thiotrophic symbioses and is also abundantly supplied with sunken wood. A significant sulfide enrichment at the wood surface was revealed. A 72 h sequence of measurements emphasized the wide fluctuation of sulfide levels (0.1–>100 μM) over time with both a tidal influence and rapid fluctuations. Protozoans observed on the wood surface were similar to Zoothamnium niveum and to vorticellids. Our SEM observations revealed their association with ectosymbiotic bacteria, which are likely to be sulfide-oxidizers. These results support the idea that sunken wood surfaces constitute an environment suitable for sulfide-oxidizing symbioses.  相似文献   
28.
Nutrient distributions across the Porcupine Bank   总被引:1,自引:0,他引:1  
  相似文献   
29.
A method is presented for characterizing the spatial variability of water infiltration and soil hydraulic properties at the transect and field scales. The method involves monitoring a set of 10 Beerkan runs distributed over a 1-m length of soil, and running BEST (Beerkan estimation of soil transfer parameters) methods to derive hydraulic parameters. The Beerkan multi-runs (BMR) method provides a significant amount of data at the transect scale, allowing the determination of correlations between water infiltration variables and hydraulic parameters, and the detection of specific runs affected by preferential flow or water repellence. The realization of several BMRs at several transects on the same site allows comparison of the variation between locations (spatial variability at the field scale) and at the transect scale (spatial variability at the metre scale), using analysis of variance. From the results, we determined the spatial variability of water infiltration and hydraulic parameters as well as its characteristic scale (transect versus field).  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号