首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   0篇
地球物理   5篇
地质学   2篇
海洋学   6篇
  2020年   1篇
  2018年   1篇
  2014年   1篇
  2010年   1篇
  2009年   1篇
  2008年   5篇
  2006年   2篇
  1997年   1篇
排序方式: 共有13条查询结果,搜索用时 0 毫秒
11.
An ecotoxicological protocol with caged mussels, Mytilus galloprovincialis, was developed to evaluate the potential impact of an offshore gas platform in the central Adriatic Sea. Reference organisms were collected on a seasonal basis from an unpolluted site and transplanted for four weeks in both the sampling area and to the investigated platform. Chemical analyses of trace metals in mussel tissues were integrated with a multi-biomarker approach for the early detection of biological responses at several cellular targets. Induction of metallothioneins, peroxisomal proliferation and activity of acetylcholinesterase were measured as markers for specific classes of chemicals. Special attention was given to oxyradical metabolism and appearance of oxidative-mediated toxicity to reveal a more general onset of cellular disturbance. In addition to individual antioxidants (superoxide dismutase, catalase, glutathione S-transferases, glutathione reductase, Se-dependent and Se-independent glutathione peroxidases, and levels of total glutathione), the total oxyradical scavenging capacity (TOSC) allowed a quantification of the overall capability to neutralize specific forms of intracellular reactive oxygen species (ROS; i.e. peroxyl and hydroxyl radicals). Cellular damages were evaluated as lysosomal destabilization (membrane stability, accumulation of lipofuscin and neutral lipids), lipid peroxidation products (malondialdehyde) and DNA integrity (strand breaks and micronuclei); the air survival test was finally applied to evaluate the overall physiological condition of mussels. Concentration of trace metals (As, Ba, Cd, Cr, Cu, Fe, Hg, Mn, Ni, Pb, Zn) revealed only limited variations in transplanted mussels during various experimental periods and such changes appeared partly related to natural fluctuations. Among biological responses, variations of antioxidants and lysosomal stability were confirmed as sensitive early warning signals for biological disturbance of both natural and anthropogenic origin. The presented protocol with caged mussels allowed marked biological effects caused by the investigated platform to be excluded, and represented a useful approach that is easy to extend for monitoring the impact of offshore activities in the Adriatic sea.  相似文献   
12.
Decomposition incorporates organic material delivered by Pacific salmon (Oncorhynchus spp.) into aquatic and terrestrial ecosystems of streams where salmon spawn. We hypothesized that salmon tissue decomposition would be faster, and macroinvertebrate abundance and biomass higher, in terrestrial compared to aquatic habitats, and this would be reflected in the nutritional quality of the tissue. Salmon tissue in coarse-mesh bags was placed in four habitats [terrestrial: riparian (RIP), gravel bars (GRA); aquatic: stream sediment surface (STR), buried in sediments (BUR)] in four southeast Alaska watersheds. After 2 (RIP, GRA) or 4 (STR, BUR) weeks of decomposition, tissue dry mass, macronutrient content, and macroinvertebrate colonizer abundance and biomass were determined. Overall, tissue decomposition was rapid (mean k = 0.088 day?1), while nutritional quality remained high based on elemental ratios (mean C:N = 4.9; C:P = 140; N:P = 30), and differed among habitats (Linear-mixed effects model p < 0.05). Macroinvertebrate assemblages colonizing carcasses were unique to each habitat, although Diptera generally dominated. In terrestrial habitats, the dominant macroinvertebrates were Sphaeroceridae (96 % of invertebrate abundance in RIP habitat) and Calliphoridae larvae (98 % in GRA habitat). In aquatic habitats, the dominant macroinvertebrates were Chironomidae (48 % in STR habitat) and Chloroperlidae (72 % in BUR habitat). Macroinvertebrate colonizer abundance and biomass were higher in RIP (mean 286 individuals and 22 mg g?1) than in other habitats (mean 4 individuals and 3 mg g?1) (Friedman p < 0.05). Rapid decomposition rates and high invertebrate biomass, combined with the high nutritional quality of tissue, suggest rapid incorporation of critical salmon nutrients and energy into both aquatic and terrestrial ecosystems.  相似文献   
13.
Solid bitumen can arise from several reservoir processes acting on migrated petroleum. Insoluble solid organic residues can form by oxidative processes associated with thermochemical sulfate reduction (TSR) as well as by thermal chemical alteration (TCA) of petroleum. TCA may follow non-thermal processes, such as biodegradation and asphaltene precipitation, that produce viscous fluids enriched in polar compounds that are then altered into solid bitumens. It is difficult to distinguish solid bitumen formed by TCA from TSR since both processes occur under relatively high temperatures. The focus of the present work is to characterize solid bitumen samples associated with TSR- or TCA-processes using a combination of solid-state X-ray Photoelectron Spectroscopy (XPS), Sulfur X-ray Absorption Near Edge Structure Spectroscopy (S-XANES), and 13C NMR. Naturally occurring solid bitumens from three locations, Nisku Formation, Brazeau River area (TSR-related); La Barge Field, Madison Formation (TSR-related); and, the Alaskan North Slope, Brooks Range (TCA-related), are compared to solid bitumens generated in laboratory simulations of TSR and TCA.The chemical nature of solid bitumens with respect to organic nitrogen and sulfur can be understood in terms of (1) the nature of hydrocarbon precursor molecules, (2) the mode of sulfur incorporation, and (3) their concentration during thermal stress. TSR-solid bitumen is highly aromatic, sulfur-rich, and nitrogen-poor. These heteroatom distributions are attributed to the ability of TSR to incorporate copious amounts of inorganic sulfur (S/C atomic ratio >0.035) into aromatic structures and to initial low levels of nitrogen in the unaltered petroleum. In contrast, TCA-solid bitumen is derived from polar materials that are initially rich in sulfur and nitrogen. Aromaticity and nitrogen increase as thermal stress cleaves aliphatic moieties and condensation reactions take place. TCA-bitumens from the Brooks Range have <75% aromatic carbon. TCA-bitumens exposed to greater thermal stress can have a higher aromaticity, like that observed in TSR-bitumens. Organic sulfur in TCA-organic solids remains relatively constant with increasing maturation (S/C atomic ratio <0.035) due to offsetting preservation and H2S elimination reactions. Although S-XANES and 13C NMR provide information needed to understand changes in structure and reactivity that occur in the formation of petroleum solids, in some cases XPS analysis is sufficient to determine whether a solid bitumen is formed by TCA or TSR.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号