首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   302篇
  免费   5篇
  国内免费   2篇
测绘学   3篇
大气科学   7篇
地球物理   33篇
地质学   152篇
海洋学   11篇
天文学   95篇
自然地理   8篇
  2023年   2篇
  2020年   3篇
  2019年   2篇
  2018年   3篇
  2017年   6篇
  2016年   3篇
  2015年   7篇
  2014年   6篇
  2013年   15篇
  2012年   11篇
  2011年   14篇
  2010年   12篇
  2009年   13篇
  2008年   9篇
  2007年   14篇
  2006年   12篇
  2005年   5篇
  2004年   16篇
  2003年   6篇
  2002年   10篇
  2001年   8篇
  2000年   12篇
  1999年   5篇
  1997年   6篇
  1996年   8篇
  1995年   3篇
  1994年   4篇
  1993年   2篇
  1992年   4篇
  1991年   8篇
  1990年   7篇
  1989年   7篇
  1988年   8篇
  1987年   2篇
  1986年   3篇
  1985年   7篇
  1984年   4篇
  1983年   4篇
  1982年   6篇
  1981年   8篇
  1980年   3篇
  1978年   3篇
  1977年   2篇
  1976年   2篇
  1975年   1篇
  1974年   1篇
  1973年   3篇
  1972年   1篇
  1971年   2篇
  1969年   4篇
排序方式: 共有309条查询结果,搜索用时 62 毫秒
281.
Basedontheconsiderationswhetherornottherearedif-ferencesincompositionsofthemantlematerial,betweenPale-ozoicandCenozoic,andthedifferencesinrocksamp1esfrommantleliewithinandoutsideoftheTancheng-Lujiang(Tanlu)faultzoneinCenozoic,themineralinclusionsindia-mQndandxenolithsfromMengyinandFuxiankimberliteswerechosenforconstrainingthenatureofPaleozoicSCLM,andthexenolithsfromtheShanwangandQixiabasaltswererepresentativelychosenforconstrainingthenatureofCeno-zoicSCLMinsideandoutsideoftheTanlufault…  相似文献   
282.
283.
The forthcoming Herschel space mission will provide an unprecedented view of the far-infrared/submillimetre Universe, with the SPIRE instrument covering the 200–670 μm wavelength range. To obtain the best quality of astronomical data from such an expensive mission the observing modes must be optimized as far as possible. This paper presents the possible scanning strategies that can be utilized by the SPIRE photometer, within the limitations imposed by the Herschel spacecraft. Each strategy is investigated for effectiveness by performing simulated observations, using the SPIRE photometer simulator. By quantifying the data quality using a simple metric, we have been able to select the optimum scanning strategy for SPIRE when it begins taking science data within the next couple of years.
Additionally, this work has led to the development of a specific SPIRE mapmaking algorithm, based on the CMB code MADmap, to be provided as part of the SPIRE data pipeline processing suite. This will allow every SPIRE user to take full advantage of the optimized scan map strategy, which requires the use of maximum likelihood mapmakers such as MADmap.  相似文献   
284.
Composite-spectrum binary stars generally consist of a late-type giant and a main-sequence star of type A or B. Their spectra are therefore rather confusing; but by a technique of digital subtraction of the spectra of appropriate single late-type giants, composite spectra can be split into their individual components. In favourable cases the radial velocities of both components can be measured and the mass ratio determined. The procedures are illustrated by reference to HR 6902, a fifth-magnitude composite-spectrum binary. Its components are shown to have spectral types of G9 II and B8 V, with a mass ratio of 1.31, and its orbit is determined. There is some evidence that the system shows eclipses. If it does, the masses of the components are 3.9 and 3.0M⊙ respectively, and HR 6902 becomes the sixth known member of the important class ofζ Aur binaries.  相似文献   
285.
T. Andersen  W.L. Griffin  A.G. Sylvester   《Lithos》2007,93(3-4):273-287
Laser ablation ICPMS U–Pb and Lu–Hf isotope data on granitic-granodioritic gneisses of the Precambrian Vråvatn complex in central Telemark, southern Norway, indicate that the magmatic protoliths crystallized at 1201 ± 9 Ma to 1219 ± 8 Ma, from magmas with juvenile or near-juvenile Hf isotopic composition (176Hf/177Hf = 0.2823 ± 11, epsilon-Hf > + 6). These data provide supporting evidence for the depleted mantle Hf-isotope evolution curve in a time period where juvenile igneous rocks are scarce on a global scale. They also identify a hitherto unknown event of mafic underplating in the region, and provide new and important limits on the crustal evolution of the SW part of the Fennoscandian Shield. This juvenile geochemical component in the deep crust may have contributed to the 1.0–0.92 Ga anorogenic magmatism in the region, which includes both A-type granite and a large anorthosite–mangerite–charnockite–granite intrusive complex. The gneisses of the Vråvatn complex were intruded by a granitic pluton with mafic enclaves and hybrid facies (the Vrådal granite) in that period. LAM-ICPMS U–Pb data from zircons from granitic and hybrid facies of the pluton indicates an intrusive age of 966 ± 4 Ma, and give a hint of ca. 1.46 Ga inheritance. The initial Hf isotopic composition of this granite (176Hf/177Hf = 0.28219 ± 13, epsilon-Hf = − 5 to + 6) overlaps with mixtures of pre-1.7 Ga crustal rocks and juvenile Sveconorwegian crust, lithospheric mantle and/or global depleted mantle. Contributions from ca. 1.2 Ga crustal underplate must be considered when modelling the petrogenesis of late Sveconorwegian anorogenic magmatism in the region.  相似文献   
286.
Two localities on the Leizhou Peninsula, southern China (Yingfengling and Tianyang basaltic volcanoes) yield a wide variety of mantle-derived xenoliths including Cr-diopside series mantle wall rocks and two distinct types of Al-augite series pyroxenites. Metapyroxenites have re-equilibrated granoblastic microstructures whereas pyroxenites with igneous microstructures have not thermally equilibrated to the mantle conditions. An abundant suite of megacrysts and megacrystic aggregates (including garnet, plagioclase, clinopyroxene, ilmenite and apatite) is interpreted as the pegmatitic equivalents of the igneous pyroxenite suite. Layered spinel lherzolite/spinel websterite xenoliths were formed by metamorphic differentiation caused by mantle deformation, inferred to be related to lithospheric thinning. Some metapyroxenites have garnet websterite assemblages that allow calculation of their mantle equilibration temperatures and pressures and the construction of the first xenolith geotherm for the southernmost China lithosphere. Heat flow data measured at the surface in this region yield model conductive geotherms (using average crustal conductivity values) that are consistent with the xenolith geotherm for the mantle. The calculated mean surface heat flux is 110 mW/m2. This high heat flux and the high geotherm are consistent with young lithospheric thinning in southern China, and with recent tomography results showing shallow low-velocity zones in this region. The xenolith geotherm allows the construction of a lithospheric rock type section for the Leizhou region; it shows that the crust–mantle boundary lies at about 30 km, consistent with seismic data, and that the lithosphere–asthenosphere boundary lies at about 100 km.  相似文献   
287.
Lithosphere mapping beneath the North American plate   总被引:2,自引:0,他引:2  
Major- and trace-element analyses of garnets from heavy-mineral concentrates have been used to derive the compositional and thermal structure of the subcontinental lithospheric mantle (SCLM) beneath 16 areas within the core of the ancient Laurentian continent and 11 areas in the craton margin and fringing mobile belts. Results are presented as stratigraphic sections showing variations in the relative proportions of different rock types and metasomatic styles, and the mean Fo content of olivine, with depth. Detailed comparisons with data from mantle xenoliths demonstrate the reliability of the sections.

In the Slave Province, the SCLM in most areas shows a two-layer structure with a boundary at 140–160 km depth. The upper layer shows pronounced lateral variations, whereas the lower layer, after accounting for different degrees of melt-related metasomatism, shows marked uniformity. The lower layer is interpreted as a subcreted plume head, added at ca. 3.2 Ga; this boundary between the layers rises to <100 km depth toward the northern and southern edges of the craton. Strongly layered SCLM suggests that plume subcretion may also have played a role in the construction of the lithosphere beneath Michigan and Saskatchewan.

Outside the Slave Province, most North American Archon SCLM sections are less depleted than similar sections in southern Africa and Siberia; this may reflect extensive metasomatic modification. In E. Canada, the degree of modification increases toward the craton margin, and the SCLM beneath the Kapuskasing Structural Zone is typical of that beneath Proterozoic to Phanerozoic mobile belts.

SCLM sections from several Proterozoic areas around the margin of the Laurentian continental core (W. Greenland, Colorado–Wyoming district, Arkansas) show discontinuities and gaps that are interpreted as the effects of lithosphere stacking during collisional orogeny. Some areas affected by Proterozoic orogenesis (Wyoming Craton, Alberta, W. Greenland) appear to retain buoyant, modified Archean SCLM. Possible juvenile Proterozoic SCLM beneath the Colorado Plateau is significantly less refractory. The SCLM beneath the Kansas kimberlite field is highly melt-metasomatised, reflecting its proximity to the Mid-Continent Rift System.

A traverse across the continent shows that the upper part of the cratonic SCLM is highly magnesian; the decrease in mg# with depth is interpreted as the cumulative effect of metasomatic modification through time. The relatively small variations in seismic velocity within the continental core largely reflect the thickness of this depleted layer. The larger drop in seismic velocity in the surrounding Proton and Tecton belts reflects the closely coupled changes in SCLM composition and geotherm.  相似文献   

288.
289.
290.
Recent mapping has provided a close look at detail relationships contrasting a major infrastructural zone with an adjacent suprastructural area in the southern U.S. Piedmont. The Inner Piedmont belt infrastructural flow folds terminate against a northeast trending polydeformational cataclastic zone as one traverses toward the southeast along the South Carolina — Georgia border. The broad axial part of the infrastructural Inner Piedmont is represented by a complex of sillimanite-bearing mica gneiss and schist. Interlayered amphibolite permits recognition of major nappe-like antiforms and synforms. The southeastern edge of the Inner Piedmont is devided from the axial core by a tectonic slide, and is a separate and distinct nappe. Granitoid gneiss and amphibolite dominate in it.Suprastructural rock terrane lies southeast of the cataclastic Lowndesville (Kings Mountain) belt, which is considered to have behaved as a detachment zone between the plastic infrastructure in the northwest and the stiffer suprastructure in the south-east. Mafic metamorphosed rocks dominate the lower stratigraphic section in the suprastructural area. These Charlotte belt rocks are overlain by low grade metavolcanic rocks of the Carolina Slate belt. Tight upright folds characterize the suprastructure.Granitoid bodies of large to small size intrude the Piedmont of this area. Extensive migmatite is associated with this granitoid material in the infrastructural Inner Piedmont belt. Much of the granitoid material formed during the stockwork tectonic phase in an early Paleozoic orogenesis.
Zusammenfassung Neue geologische Kartierungen im südlichen Appalachen-Vorgebirge ergaben einen engen Zusammenhang zwischen Oberbau und Unterbau. In der inneren Piedmont-Zone endet der Fließfaltenbau gegen eine mehrfach deformierte, kataklastische Zone, die sich nach SE entlang der South Carolina/Georgia-Grenze erstreckt. Die breite Achsialzone des Unterbaues im Bereich des inneren Piedmont wird aus Sillimanitführenden Glimmer-Gneisen und Schiefern aufgebaut. Zwischengelagerte Amphibolite erlauben in Synklinen und Antiklinen größere deckenartige Strukturen zu erkennen. Der SE-Teil des inneren Piedmont ist vom achsialen Kern durch eine tektonische Bewegungsfläche getrennt und stellt eine eigene Decke dar. Hier dominieren Granit-Gneise und Amphibolite.Der Oberbau folgt SE der kataklastischen Lowndesville (Kings Mountain) Zone als vom plastischeren Unterbau abgescherter starrer Komplex. Mafische Metamorphite bilden den stratigraphisch liegenden Teil des Oberbaues. Diese Charlotte Belt-Gesteine werden von niedrig metamorphen metavulkanischen Gesteinen des Carolina Slate Belt überlagert. Aufrechte Falten charakterisieren den Oberbau.Granitkörper von verschiedenen Dimensionen intrudieren in das Piedmont. Migmatisierung ist vor allem im inneren Piedmont zu beobachten. Das granitische Material wurde während der Ausbildung der Stockwerkstektonik in einer frühpaläozoischen Gebirgsbildung geformt.

Résumé Une étude géologique récente fournit une première connaissance des contrastes qui existent entre une zone majeure infrastructurale dans le Piedmont des Appalaches du Sud et une région adjacente, superstructurale. Des plis infrastructuraux d'écoulement se terminent contre une zone cataclastique qui s'étend vers le sud-est le long de la frontière entre la Géorgie et la Caroline du Sud. Cette zone, comme toutes les zones, court vers le nord-est. La large zone axiale de l'infrastructure, est représentée par uncomplexe de gneiss et de schistes à mica et à sillimanite. Des intercalations d'amphibolite permettent de reconnaître dans les antiformes et synformes de grandes structures en nappes. Le bord sud-est de l'Inner Piedmont, qui est une nappe distincte, est séparé de la partie centrale par une faille. Le gneiss granitique et l'amphibolite y prédominent.Le domaine superstructural se trouve au sud-est de la zone cataclastique du Lowndesville (Kings Mountain), qui est considérée comme la zone de détachement entre l'infrastructure plastique du nord-ouest et la superstructure plus rigide du sud-est. Des roches métamorphiques et basiques prédominent dans les couches stratigraphiques inférieurs dans la partie rigide. Ces roches de la bande Charlotte sont recouvertes par les roches volcaniques, moins métamorphiques, de la zone Caroline du Slate. Des plissements serrés et verticaux caractérisent la zone megastructurales.Des plutons granitiques de dimensions variées pénètrent le Piedmont, avec migmatitisation surtout dans la zone d'infrastructure. Le materiau granitique s'est formé, au cours de la formation d'une tectonique en Stockwerk lors d'une orogénie dans le Paleozoique ancien.

. Piedmont , SE : /. Piedmont , . . SE Piedmont . - . Lowndesville SE — King Mountain — . . Charlotte Carolina Slate, . . Piedmont . Piedmont . .
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号