首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28篇
  免费   0篇
大气科学   3篇
地球物理   9篇
地质学   12篇
海洋学   2篇
自然地理   2篇
  2022年   1篇
  2021年   1篇
  2020年   2篇
  2017年   2篇
  2016年   1篇
  2014年   2篇
  2013年   1篇
  2012年   3篇
  2011年   1篇
  2010年   1篇
  2009年   3篇
  2008年   2篇
  2007年   4篇
  2006年   2篇
  2002年   1篇
  1989年   1篇
排序方式: 共有28条查询结果,搜索用时 78 毫秒
21.
Textural, compositional, physical and geophysical determinations were carried out on 111 beach and dune sand samples from two areas in New Zealand: the Kapiti–Foxton coast sourced by terranes of andesite and greywackes and the Farewell Spit–Wharariki coast sourced by a wide variety of Paleozoic terranes. Our aim is to understand how long‐shore drift, beach width and source rock control the sedimentological and petrographic characteristics of beach and dune sands. Furthermore, this study shows the usefulness of specific minerals (quartz, plagioclase with magnetite inclusions, monomineralic opaque grains) to interpret the physical processes (fluvial discharges, long‐shore currents, winds) that distribute beach and dune sands in narrow and wide coastal plains. This was done by means of direct (grain size and modal analyses) and indirect (specific gravity, magnetic/non‐magnetic separations M/NM, magnetic susceptibility measurements, hysteresis loops) methods. Results are compared with beach sands from Hawaii, Oregon, the Spanish Mediterranean, Elba Island and Southern California. Compositionally, the Kapiti–Foxton sands are similar to first‐order immature sands, which retain their fluvial signature. This results from the high discharge of rivers and the narrow beaches that control the composition of the Kapiti–Foxton sands. The abundance of feldspar with magnetite inclusions controls the specific gravity of the Kapiti–Foxton sands due to their low content of opaque minerals and coarse grain size. Magnetic susceptibility of the sands is related mainly to the abundance of feldspars with Fe oxides, volcanic lithics and free‐opaque minerals. The Farewell Spit–Wharariki sands are slightly more mature than the Kapiti–Foxton sands. The composition of the Farewell Spit–Wharariki sands does not reflect accurately their provenance due to the prevalence of long‐shore drift, waves, little river input and a wide beach. Low abundance of feldspar with magnetite inclusions and free opaque grains produces poor correlations between specific gravity (Sg) and Fe oxide bearing minerals. The small correlation between opaque grains and M/NM may be related to grain size. The magnetic susceptibility of Farewell Spit–Wharariki sands is low due to the low content of grains with magnetite inclusions. Hysteresis and isothermal remnant magnetization (IRM) agree with the magnetic susceptibility values. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
22.
The impacts of climate change exacerbate the myriad challenges faced by smallholder farmers in the Tropics. In many of these same regions, there is a lack of current, consistent, and spatially-explicit data, which severely limits the ability to locate smallholder communities, map their adaptive capacity, and target adaptation measures to these communities. To explore the adaptive capacity of smallholder farmers in three data-poor countries in Central America, we leveraged expert input through in-depth mapping interviews to locate agricultural landscapes, identify smallholder farming systems within them, and characterize different components of farmer adaptive capacity. We also used this input to generate an index of adaptive capacity that allows for comparison across countries and farming systems. Here, we present an overview of the expert method used, followed by an examination of our results, including the intercountry variation in expert knowledge and the characterization of adaptive capacity for both subsistence and smallholder coffee farmers. While this approach does not replace the need to collect regular and consistent data on farming systems (e.g. agricultural census), our study demonstrates a rapid assessment approach for using expert input to fill key data gaps, enable trans-boundary comparisons, and to facilitate the identification of the most vulnerable smallholder communities for adaptation planning in data-poor environments that are typical of tropical regions. One potential benefit from incorporating this approach is that it facilitates the systematic consideration of field-based and regional experience into assessments of adaptive capacity, contributing to the relevance and utility of adaptation plans.  相似文献   
23.
Natural Hazards - We performed a seismic vulnerability assessment that involves geotechnical and building structure analysis for Puerto Vallarta, Mexico, a city located along the pacific coast....  相似文献   
24.
This study presents the groundwater flow and salinity dynamics along a river estuary, the Werribee River in Victoria, Australia, at local and regional scales. Along a single reach, salinity across a transverse section of the channel (~80 m long) with a point bar was monitored using time-lapse electrical resistivity (ER) through a tidal cycle. Groundwater fluxes were concurrently estimated by monitoring groundwater levels and temperature profiles. Regional porewater salinity distribution was mapped using 6-km long longitudinal ER surveys during summer and winter. The time-lapse ER across the channel revealed a static electrically resistive zone on the side of the channel with a pronounced cut bank. Upward groundwater flux and steep vertical temperature gradients with colder temperatures deeper within the sediment suggested a stable zone of fresh groundwater discharge along this cut bank area. Generally, less resistive zones were observed at the shallow portion of the inner meander bank and at the channel center. Subsurface temperatures close to surface water values, vertical head gradients indicating both upward and downward groundwater flux, and higher porewater salinity closer to that of estuary water suggest strong hyporheic circulation in these zones. The longitudinal surveys revealed higher ER values along deep and sinuous segments and low ER values in shallow and straighter reaches in both summer and winter; these patterns are consistent with the local channel-scale observations. This study highlights the interacting effects of channel morphology, broad groundwater–surface water interaction, and hyporheic exchange on porewater salinity dynamics underneath and adjacent to a river estuary.  相似文献   
25.
Twenty-one surficial sand samples from the Altar Desert coastal and desert dune systems were analysed for rare earth elements (REE) content. This was done to observe the provenance signatures for four strategic dune localities near the Colorado River Delta, the El Pinacate dune fields, and the beaches of the north of the Gulf of California in the state of Sonora, Mexico. Our goals are to show which mechanisms (i.e., aeolian, marine) exert more influence on the composition of the Altar Desert dune sands. This study also shows the usefulness of REE spatial distribution to determine the relative mobility of the sand. Some sand samples from the dune systems in San Luis Río Colorado (SLRC), Golfo de Santa Clara (GSC), and Puerto Peñasco (PP) displayed dissimilar REE concentrations with respect to the rest of the sand samples from the same sites. These differences can be related to short aeolian transport distance in the sands with high REE concentrations and long aeolian transport distance in the sands with low REE concentrations. Besides, high REE concentration in the sands might be due to their closeness to the Colorado River Delta sediments and to recycled sands derived from granitic rocks. In contrast, all the sand samples from the El Pinacate (EP) site have similar REE concentration values, suggesting that the El Pinacate dune sands are influenced by more selective aeolian processes and less diverse heavy mineral content. The Altar Desert dune sands are derived from granitic sources eroded by the Colorado River. Our results also indicate that the Altar Desert dune sands are low in heavy mineral content (with the exception of Fe and Ti bearing minerals) and enriched in carbonates with phosphates (especially at the PP site) yielding poor correlations between REE and major element concentrations. The REE geographical distribution values in the Altar Desert dune sands indicate that light and heavy REE concentration values are related to aeolian transport, maturity of the sands, their low weathering rates, proximity of the source rocks, and the biogenic debris input from beach sands into the dune.  相似文献   
26.
Geochemical estimates of N2 fixation in the North Atlantic often serve as a foundation for estimating global marine diazotrophy. Yet despite being well-studied, estimations of nitrogen fixation rates in this basin vary widely. Here we investigate the variability in published estimates of excess nitrogen accumulation rates in the main thermocline of the subtropical North Atlantic, testing the assumptions and choices made in the analyses. Employing one of these previously described methods, modified here with improved estimates of excess N spatial gradients and ventilation rates of the main thermocline, we determine a total excess N accumulation rate of 7.8 ± 1.7 × 1011 mol N yr− 1. Contributions to excess N development include atmospheric deposition of high N:P nutrients (adding excess N at a rate of 3.0 ± 0.9 × 1011 mol N yr− 1 for  38% of the total), high N:P dissolved organic matter advected into and mineralized in the main thermocline (adding excess N at 2.2 ± 1.1 × 1011 mol N yr− 1 for  28% of the total), and, calculated by mass balance of the excess N field, N2 fixation (adding excess N at 2.6 ± 2.2 × 1011 mol N yr− 1 for  33% of the total). Assuming an N:P of 40 and this rate of excess N accumulation due to the process, N2 fixation in the North Atlantic subtropical gyre is estimated at  4 × 1011 mol N yr− 1. This relatively low rate of N2 fixation suggests that i) the rate of N2 fixation in the North Atlantic is greatly overestimated in some previous analyses, ii) the main thermocline is not the primary repository of N fixed by diazotrophs, and/or iii) the N:P ratio of exported diazotrophic organic matter is much lower than generally assumed. It is this last possibility, and our uncertainty in the N:P ratios of exported material supporting excess N development, that greatly lessens our confidence in geochemical measures of N2 fixation.  相似文献   
27.
The transformation from smectite to chlorite has been interpreted as involving either a disequilibrium chlorite/smectite mixed‐layering sequence, or an equilibrated discontinuous sequence involving smectite–corrensite–chlorite. Here, analysis of the smectite to chlorite transition in different geothermal systems leads us to propose that the transformation proceeds via three contrasting reaction pathways involving (i) a continuous mixed‐layer chlorite/smectite series; (ii) a discontinuous smectite–corrensite–chlorite series and (iii) a direct smectite to chlorite transition. Such contrasting pathways are not in accord with an equilibrium mineral reaction series, suggesting that these pathways record kinetically controlled reaction progress. In the geothermal systems reviewed the style of reaction pathway and degree of reaction progress is closely correlated with intensity of recrystallization, and not to differences in thermal gradients or clay grain size. This suggests a kinetic effect linked to variation in fluid/rock ratios and/or a contrast between advective or diffusive fluid transport. The mode of fluid transport provides a means by which the rates of dissolution/nucleation/growth can control the reaction style and the reaction progress of the smectite to chlorite transition. Slow rates of growth are linked to the first reaction pathway involving mixed‐layering, while increasing rates of growth, relative to nucleation, promote the generation of more ordered structures and ultimately lead to the direct smectite to chlorite transition, representative of the third pathway.  相似文献   
28.
Sedimentological, compositional and geochemical determinations were carried out on 54 desert and coastal dune sand samples to study the provenance of desert and coastal dunes of the Altar Desert, Sonora, Mexico. Grain size distributions of the desert dune sands are influenced by the Colorado River Delta sediment supply and wind selectiveness. The desert dune sands are derived mainly from the quartz‐rich Colorado River Delta sediments and sedimentary lithics. The dune height does not exert a control over the grain size distributions of the desert dune sands. The quartz enrichment of the desert dune sands may be due to wind sorting, which concentrates more quartz grains, and to the aeolian activity, which has depleted the feldspar grains through subaerial collisions. The desert dune sands suffer from little chemical weathering and they are chemically homogeneous, with chemical alteration indices similar to those found in other deserts of the world. The desert sands have been more influenced by sedimentary and granitic sources. This is supported by the fact that Ba and Sr concentration values of the desert sands are within the range of the Ba and Sr concentration values of the Colorado River quartz‐rich sediments. The Sr values are also linked to the presence of Ca‐bearing minerals. The Zr values are linked to the sedimentary sources and heavy mineral content in the desert dunes. The Golfo de Santa Clara and Puerto Peñasco coastal dune sands are influenced by long shore drift, tidal and aeolian processes. Coarse grains are found on the flanks whereas fine grains are on the crest of the dunes. High tidal regimens, long shore drift and supply from Colorado Delta River sediments produce quartz‐rich sands on the beach that are subsequently transported into the coastal dunes. Outcrops of Quaternary sedimentary rocks and granitic sources increase the sedimentary and plutonic lithic content of the coastal dune sands. The chemical index of alteration (CIA) values for the desert and coastal dune sands indicate that both dune types are chemically homogeneous. The trace element values for the coastal dune sands are similar to those found for the desert dune sands. However, an increase in Sr content in the coastal dune sands may be due to more CaCO3 of biogenic origin as compared to the desert dune sands. Correlations between the studied parameters show that the dune sands are controlled by sedimentary sources (e.g. Colorado River Delta sediments), since heavy minerals are present in low percentages in the dune sands, probably due to little heavy mineral content from the source sediment; grain sizes in the dune sands are coarser than those in which heavy minerals are found and/or the wind speed might not exert a potential entrainment effect on the heavy mineral fractions to be transported into the dune. A cluster analysis shows that the El Pinacate group is significantly different from the rest of the dune sands in terms of the grain‐size parameters due to longer transport of the sands and the long distance from the source sediment, whereas the Puerto Peñasco coastal dune sands are different from the rest of the groups in terms of their geochemistry, probably caused by their high CaCO3 content and slight decrease in the CIA value. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号