首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   68489篇
  免费   1445篇
  国内免费   1551篇
测绘学   1772篇
大气科学   5445篇
地球物理   13964篇
地质学   24116篇
海洋学   6180篇
天文学   15145篇
综合类   353篇
自然地理   4510篇
  2021年   634篇
  2020年   661篇
  2019年   705篇
  2018年   1412篇
  2017年   1334篇
  2016年   1783篇
  2015年   1217篇
  2014年   1740篇
  2013年   3451篇
  2012年   2181篇
  2011年   2946篇
  2010年   2549篇
  2009年   3446篇
  2008年   2988篇
  2007年   2973篇
  2006年   2831篇
  2005年   2273篇
  2004年   2133篇
  2003年   2024篇
  2002年   1894篇
  2001年   1646篇
  2000年   1642篇
  1999年   1423篇
  1998年   1423篇
  1997年   1396篇
  1996年   1183篇
  1995年   1100篇
  1994年   959篇
  1993年   881篇
  1992年   867篇
  1991年   799篇
  1990年   856篇
  1989年   751篇
  1988年   706篇
  1987年   833篇
  1986年   738篇
  1985年   896篇
  1984年   1050篇
  1983年   941篇
  1982年   903篇
  1981年   811篇
  1980年   798篇
  1979年   704篇
  1978年   706篇
  1977年   662篇
  1976年   600篇
  1975年   595篇
  1974年   614篇
  1973年   646篇
  1972年   376篇
排序方式: 共有10000条查询结果,搜索用时 11 毫秒
91.
92.
93.
94.
An experimental study on reduction of U (Ⅵ) by anaerobic bacteria, Shewane//a putrefaciens, is first reported here in China. The experimental conditions were: 35℃ and pH =7.0-7.4, corresponding to a physicochemical environments in which the sandstone-hosted interlayer oxidation-zone type uranium deposit formed in Northwest China's Xinjiang. Bacteria adopted in the present experiment, Shewanella putrefaciens, occur extensively in natural environment. Our study shows that nano-crystal precipitates of uraninite quickly occurred on the surface of the cells within one week. It was found that the pitchblende was characterized by a random arrangement of uraninite nanocrystals (2-4 nm) in it, significantly different from natural pitchblende in which uraninite nanocrystals are arranged in order. Finally, a possible mechanism of uranium biomineralization by microorganisms in the deposits is discussed. Our investigation may supply a technical train of thoughts for bioremediation of nuclear-contaminated water environments and for underground dissolving extraction of the sandstone-hosted uranium ores.  相似文献   
95.
96.
Although many bioessential metals are scarce in natural water and rock systems, microbial secretion of high-affinity ligands for metal extraction from solid phases has only been documented for Fe. However, we have discovered that Mo is extracted from a silicate by a high-affinity ligand (a possible “molybdophore”) secreted by an N2-fixing soil bacterium. The putative molybdophore, aminochelin, is secreted as a siderophore under Fe-depleted conditions, but is also secreted under Fe-sufficient, Mo-depleted conditions. Presumably, molybdophore production facilitates uptake of Mo for use in Mo enzymes. In contrast, an Fe-requiring soil bacterium without a special Mo requirement only enhances the release of Fe from the silicate. Fractionation of Mo stable isotopes during uptake to cells may provide a “fingerprint” for the importance of chelating ligands in such systems. Many such metal-specific ligands secreted by prokaryotes for extraction of bioessential metals, their effects on Earth materials, and their possible utility in the recovery of economic metals remain to be discovered.  相似文献   
97.
An investigation of the influence of humate on the mobility of copper(II) ions in a kaolinite soil using leaching tests and electrokinetic experiments is reported. The data are interpreted in terms of humate–copper–clay interactions and humate electrical charge. Humate is mostly immobile below pH8 but is more mobile in alkaline conditions (sorption to kaolinite reduces its mobility in neutral conditions). Copper humate complexes are mobile in both acidic and alkaline conditions, but not in neutral conditions where they are sorbed. The dissolved copper humate complexes that form in acidic conditions are positively charged. The net effect of humate is to increase cupric ion mobility in kaolinite soil, especially in alkaline conditions.  相似文献   
98.
In 1958, researchers from the University of Chicago documented increases in the number of structures in the floodplains of 17 American cities, a phenomenon attributed to the prevalence of flood control structures. Because federal policies have shifted to managing floodplains, this paper updates the 1958 study for nine of the cities. Several trends are apparent. Development pressures determine flood-plain encroachment; floodplain management regulations have been implemented where it was easiest to do so. Further, structural measures continue to dominate. Thus, while many local officials are becoming more aware of advantages of flood-plain regulation, implementation and enforcement are inconsistent and uneven.  相似文献   
99.
Mineral modes have been determined for specimens of eight rocktypes from CuK X-ray powder diffraction data using the Rietveldmethod. The samples include two granites, a granodiorite, adamellite,gabbro, basalt, trachyte, and two granulite-facies metamorphicrocks. Up to eight individual mineral components have been measuredin each sample (no glassy phases were observed), with a detectionlimit of {small tilde}1 wt.%, depending on the mineral assemblage.Marked variations in grain size (i.e., granite vs. trachyte)provide no difficulties for the X-ray method. The X-ray resultscompare very favourably with (1) optical modes determined forthe medium–coarse-grained samples by point counting, (2)normative calculations obtained using locally enhanced catanormand mesonorm software, and (3) corresponding Rietveld modesdetermined, for two samples, from neutron powder data. Wheredifferences occur, these are discussed in relation to the limitationsof each of the methods. The improved accuracy of the X-ray method is due primarily tothe incorporation of the full diffraction profile in the Rietveldanalysis calculations, and the elimination of preferred orientationby collecting the data from samples packed in glass capillaries(i.e., Debye–Scherrer mode). The good agreement of theX-ray and neutron modes shows that the usual problems encounteredwith microabsorption, extinction, and sampling are of littleconcern in these rocks. The results highlight one of the majoradvantages provided by Rietveld modal analysis over the moretraditional ‘reference intensity’ X-ray methods,namely, that the crystal chemistry (and thus the calibrationconstants) of the individual phases can be adjusted dynamicallyduring each individual analysis. This not only provides moreaccurate phase abundances, but also gives important supplementaryinformation about the mineralogy of the major components.  相似文献   
100.
A Model of Magmatic Crystallization   总被引:2,自引:0,他引:2  
A computer model simulating fractional crystallization at oneatmosphere pressure incorporates nine broadly-defined minerals—magnetite,olivine, hypersthene, augite, quartz, plagioclase, orthoclase,leucite, and nepheline. The crystallization temperature of eachmineral is considered to be a smooth function of the compositionof the magmatic liquid. These mineral temperature equationsare obtained by multiple linear regression analysis of informationfrom published silicate systems and rock melting experiments.The nine equations are solved for any primary liquid, withinthe broad range of common magma types, to select the crystallizingmineral or minerals. Partition ratios from published experimentsand analyses of lavas and phenocrysts permit calculation ofthe composition of the crystallizing mineral assemblage. Subtractionof a small amount of that composition from the primary liquidyields a new liquid, which may be recycled to yield a sequenceof liquids during fractional crystallization. The crystallizationmodel handles assemblages of co-precipitating minerals, andcan trace progressive saturation in new minerals, substitutionof a new mineral for an old mineral, and cessation of crystallizationof a mineral. The sequences of minerals and liquids derivedfrom a broad set of primary liquids are geologically realistic,so the model is useful in predicting phenocrysts in volcanicrocks and events during crystallization of shallow intrusions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号