首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   37258篇
  免费   1105篇
  国内免费   1048篇
测绘学   948篇
大气科学   2875篇
地球物理   7660篇
地质学   13782篇
海洋学   3339篇
天文学   8157篇
综合类   240篇
自然地理   2410篇
  2022年   291篇
  2021年   474篇
  2020年   457篇
  2019年   495篇
  2018年   914篇
  2017年   875篇
  2016年   1050篇
  2015年   723篇
  2014年   1049篇
  2013年   1869篇
  2012年   1345篇
  2011年   1788篇
  2010年   1564篇
  2009年   2020篇
  2008年   1699篇
  2007年   1768篇
  2006年   1699篇
  2005年   1221篇
  2004年   1139篇
  2003年   1037篇
  2002年   1005篇
  2001年   845篇
  2000年   825篇
  1999年   672篇
  1998年   716篇
  1997年   690篇
  1996年   572篇
  1995年   562篇
  1994年   479篇
  1993年   421篇
  1992年   419篇
  1991年   386篇
  1990年   457篇
  1989年   373篇
  1988年   356篇
  1987年   438篇
  1986年   346篇
  1985年   430篇
  1984年   531篇
  1983年   451篇
  1982年   452篇
  1981年   403篇
  1980年   419篇
  1979年   360篇
  1978年   345篇
  1977年   340篇
  1976年   309篇
  1975年   296篇
  1974年   312篇
  1973年   340篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
981.
Phytoplankton is considered a key component mediating the ocean-atmospheric exchange of carbon dioxide and oxygen. Lab simulations which model biological responses to atmospheric change are difficult to translate into natural settings owing in part to the vertical migration of phytoplankton. In the sea this vertical migration acts to regulate actual carbon dioxide consumption. To capture some critical properties of this vertical material transfer, we monitored the effects of atmospheric CO2 on dense suspensions of bioconvecting microorganisms. Bioconvection refers to the spontaneous patterns of circulation which arise among such upwardly swimming cells as alga, protozoa, zoospore and large bacteria. Gravity, phototaxis and chemotaxis have all been implicated as affecting pattern-forming ability. The ability of a biologically active suspension to detect atmospheric changes offers a unique method to quantify organism adjustment and vertical migration. With increasing CO2, bioconvection patterns in alga (P. parva) and protozoa (T. pyriformis) lose their robustness, and surface cell populations retreat from the highest CO2 regions. Cell movement (both percent motile and mean velocity) generally diminishes. A general program of image analysis yields statistically significant variations in macroscopic migration patterns; both fractal dimension and various crystallographic parameters correlate strongly with carbon dioxide content.  相似文献   
982.
Surface Heterogeneity and Vertical Structure of the Boundary Layer   总被引:4,自引:3,他引:4  
  相似文献   
983.
The International Atomic Energy Agency (IAEA) organized a co-ordinated research project (CRP) on Validation and application of plants as biomonitors of trace element atmospheric pollution analysed by nuclear and related techniques involving 14 participating countries. The CRPs objective was to identify appropriate bioindicators for local and/or regional application and validate them for general air pollution monitoring. Activities included quantification studies, research into spatial and time resolution for particular organisms, and physiological studies. A number of suitable bioindicators were identified in different parts of the globe and tested during the CRP. Sampling strategies were reviewed and the recommended approach adopted by the group. Appropriate sample preparation procedures were assessed and harmonised to the degree allowed by different geographic and climatic conditions in the participating countries. Two interlaboratory comparison exercises were carried out on lichen and moss materials. Results confirmed definite improvement in analytical performance of the participating laboratories, but also revealed possible inconsistencies due to different sample processing procedures. Several monitoring surveys were carried out and consequently pollution maps drawn for extended areas or countries. Overall results confirmed applicability of lower plants for assessing the degree of atmospheric pollution and provided several countries with effective monitoring tools not used before.  相似文献   
984.
Summary ?A code for the simulation of atmospheric flows in 3D is presented. The underlying mathematical model is fully compressible, it takes gravity into account but Coriolis forces, turbulence and viscosity are neglected. The general numerical code consists of a finite volume discretization on unstructured hexahedral grids in 3D. The code is presently being investigated on applications to the calculation of atmospheric gravity waves on a mesh which has a structured type and is locally refined near the orography. We develop two schemes, the main difference between them lies in the different discretizations for the mass fluxes. We show that both schemes resolve typical structures of gravity waves in potential flow, linear hydrostatic motion and nonlinear non-hydrostatic regime. We compare advantages and disadvantages of the developed schemes. Received April 20, 2001; revised September 10, 2001  相似文献   
985.
In studies of large-scale ocean dynamics, often quoted values of Sverdrup transport are computed using the Hellerman–Rosenstein wind stress climatology. The Sverdrup solution varies, however, depending on the wind set used. We examine the differences in the large-scale upper ocean response to different surface momentum forcing fields for the North Atlantic Ocean by comparing the different Sverdrup interior/Munk western boundary layer solutions produced by a 1/16° linear numerical ocean model forced by 11 different wind stress climatologies. Significant differences in the results underscore the importance of careful selection of a wind set for Sverdrup transport calculation and for driving nonlinear models. This high-resolution modeling approach to solving the linear wind-driven ocean circulation problem is a convenient way to discern details of the Sverdrup flow and Munk western boundary layers in areas of complicated geometry such as the Caribbean and Bahamas. In addition, the linear solutions from a large number of wind sets provide a well-understood baseline oceanic response to wind stress forcing and thus, (1) insight into the dynamics of observed circulation features, by themselves and in conjunction with nonlinear models, and (2) insight into nonlinear model sensitivity to the choice of wind-forcing product.The wind stress products are evaluated and insight into the linear dynamics of specific ocean features is obtained by examining wind stress curl patterns in relation to the corresponding high-resolution linear solutions in conjunction with observational knowledge of the ocean circulation. In the Sverdrup/Munk solutions, the Gulf Stream pathway consists of two branches. One separates from the coast at the observed separation point, but penetrates due east in an unrealistic manner. The other, which overshoots the separation point at Cape Hatteras and continues to flow northward along the continental boundary, is required to balance the Sverdrup interior transport. A similar depiction of the Gulf Stream is commonly seen in the mean flow of nonlinear, eddy-resolving basin-scale models of the North Atlantic Ocean. An O(1) change from linear dynamics is required for realistic simulation of the Gulf Stream pathway. Nine of the eleven Sverdrup solutions have a C-shaped subtropical gyre, similar to what is seen in dynamic height contours derived from observations. Three mechanisms are identified that can contribute to this pattern in the Sverdrup transport contours. Along 27°N, several wind sets drive realistic total western boundary current transport (within 10% of observed) when a 14 Sv global thermohaline contribution is added (COADS, ECMWF 10 m re-analysis and operational, Hellerman–Rosenstein and National Centers for Environmental Prediction (NCEP) surface stress re-analysis), a few drive transport that is substantially too high (ECMWF 1000 mb re-analysis and operational and Isemer–Hasse) and Fleet Numerical Meteorology and Oceanography Center (FNMOC) surface stresses give linear transport that is slightly weaker than observed. However, higher order dynamics are required to explain the partitioning of this transport between the Florida Straits and just east of the Bahamas (minimal in the linear solutions vs. 5 Sv observed east of the Bahamas). Part of the Azores Current transport is explained by Sverdrup dynamics. So are the basic path of the North Atlantic Current (NAC) and the circulation features within the Intra-Americas Sea (IAS), when a linear rendition of the northward upper ocean return flow of the global thermohaline circulation is added in the form of a Munk western boundary layer.  相似文献   
986.
Typhoon Morakot (2009) produced 2855 mm of rain and was the deadliest typhoon to impact Taiwan with 619 deaths and 76 missing persons, including a landslide that wiped out an entire village. While Morakot did not exceed the heaviest 24-h rain record, the combination of heavy rain and long duration that led to the record accumulation is attributed to the southwest summer monsoon influence on the typhoon. Thus, a special combination of factors was involved in the Morakot disaster: (i) Strong southwesterly monsoon winds; (ii) Convergence between the typhoon circulation and monsoon flow to form an east-west oriented convective band over the Taiwan Strait that was quasi-stationary and long-lasting; (iii) A typhoon in a specific location relative to the Central Mountain Range and moving slowly; and (iv) Steep topography that provided rapid lifting of the moist air stream. The contributions of each of these four factors in leading to the Morakot disaster are reviewed primarily based on new research presented at the International Conference on Typhoon Morakot (2009). Historical data sets, new Doppler radar observations, and numerical modeling have advanced the understanding of the special conditions of monsoon-influenced typhoons such as Morakot. This research is also leading to modifications of existing and development of new forecasting tools. Gaps in scientific understanding, limits to the predictability, and requirements for advanced forecast guidance tools are described that are challenges to improved warnings of these extreme precipitation and flooding events in monsoon-influenced typhoons.  相似文献   
987.
A new and general approach is presented to allow standard subgrid schemes to besuitable both for surface layer and free-stream turbulence. Simple modificationsto subgrid schemes are proposed and derived for any vertical stabilityconditions. They are simple to implement in models and are suitable for morecomplicated simulations such as large-eddy simulation with inhomogeneoussurface conditions or complex topography. They are also applicable to mesoscaleand large-scale models. These modifications are physically justified by recentmeasurements of spectra close to the ground. The spectral analysis presentedshows how the energy deficit of blocked turbulence for a given dissipation(`anomalous dissipation') dramatically affects the coefficients to be used insubgrid schemes. As shown for neutral and convective cases with wind shear,these changes allow us to substantially improve the prediction of profiles for themean quantities in the surface layer. Agreement with similarity laws in the unstablecase is found up to about 0.2zi, for simulated shear, stabilityprofiles and dissipation rates of turbulent kinetic energy.  相似文献   
988.
黄河源区生态环境变化对湖泊效应影响的数值模拟   总被引:1,自引:0,他引:1  
利用中尺度气象模式WRF,设计了陆地生态环境好转、维持现状和退化3种情境下的模拟试验,分析了夏季黄河上游鄂陵湖湖泊效应的特征和生态环境变化对该湖泊效应的影响。结果表明,夏季晴天中午至傍晚,鄂陵湖有显著的湖风环流;白天湖面感热和潜热较小,昼(夜)表现出明显的冷(暖)湖效应;湖区低层全天呈现出"湿岛"效应;受湖风作用影响,环湖陆上白天形成"湿墙"和感热高值区;随着陆地生态环境由好转到退化,湖风环流加强,环湖"湿墙"增高,湖陆边界层高度差增大,陆面感热和潜热变化显著大于湖面;陆面边界层中下部的气温和比湿主要受下垫面影响,环境退化后分别升高和减小,而在边界层顶部由于受湖风环流的作用,两者变化趋势与中下部相反。  相似文献   
989.
A verification framework for interannual-to-decadal predictions experiments   总被引:1,自引:1,他引:1  
Decadal predictions have a high profile in the climate science community and beyond, yet very little is known about their skill. Nor is there any agreed protocol for estimating their skill. This paper proposes a sound and coordinated framework for verification of decadal hindcast experiments. The framework is illustrated for decadal hindcasts tailored to meet the requirements and specifications of CMIP5 (Coupled Model Intercomparison Project phase 5). The chosen metrics address key questions about the information content in initialized decadal hindcasts. These questions are: (1) Do the initial conditions in the hindcasts lead to more accurate predictions of the climate, compared to un-initialized climate change projections? and (2) Is the prediction model’s ensemble spread an appropriate representation of forecast uncertainty on average? The first question is addressed through deterministic metrics that compare the initialized and uninitialized hindcasts. The second question is addressed through a probabilistic metric applied to the initialized hindcasts and comparing different ways to ascribe forecast uncertainty. Verification is advocated at smoothed regional scales that can illuminate broad areas of predictability, as well as at the grid scale, since many users of the decadal prediction experiments who feed the climate data into applications or decision models will use the data at grid scale, or downscale it to even higher resolution. An overall statement on skill of CMIP5 decadal hindcasts is not the aim of this paper. The results presented are only illustrative of the framework, which would enable such studies. However, broad conclusions that are beginning to emerge from the CMIP5 results include (1) Most predictability at the interannual-to-decadal scale, relative to climatological averages, comes from external forcing, particularly for temperature; (2) though moderate, additional skill is added by the initial conditions over what is imparted by external forcing alone; however, the impact of initialization may result in overall worse predictions in some regions than provided by uninitialized climate change projections; (3) limited hindcast records and the dearth of climate-quality observational data impede our ability to quantify expected skill as well as model biases; and (4) as is common to seasonal-to-interannual model predictions, the spread of the ensemble members is not necessarily a good representation of forecast uncertainty. The authors recommend that this framework be adopted to serve as a starting point to compare prediction quality across prediction systems. The framework can provide a baseline against which future improvements can be quantified. The framework also provides guidance on the use of these model predictions, which differ in fundamental ways from the climate change projections that much of the community has become familiar with, including adjustment of mean and conditional biases, and consideration of how to best approach forecast uncertainty.  相似文献   
990.
Although the bulk aerodynamic transfer coefficients for sensible (C H ) and latent (C E ) heat over snow and sea ice surfaces are necessary for accurately modeling the surface energy budget, they have been measured rarely. This paper, therefore, presents a theoretical model that predicts neutral-stability values of C H and C E as functions of the wind speed and a surface roughness parameter. The crux of the model is establishing the interfacial sublayer profiles of the scalars, temperature and water vapor, over aerodynamically smooth and rough surfaces on the basis of a surface-renewal model in which turbulent eddies continually scour the surface, transferring scalar contaminants across the interface by molecular diffusion. Matching these interfacial sublayer profiles with the semi-logarithmic inertial sublayer profiles yields the roughness lengths for temperature and water vapor. When coupled with a model for the drag coefficient over snow and sea ice based on actual measurements, these roughness lengths lead to the transfer coefficients. C E is always a few percent larger than CH. Both decrease monotonically with increasing wind speed for speeds above 1 m s–1, and both increase at all wind speeds as the surface gets rougher. Both, nevertheless, are almost always between 1.0 × 10–3 and 1.5 × 10–3.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号