首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24922篇
  免费   187篇
  国内免费   929篇
测绘学   1414篇
大气科学   1994篇
地球物理   4637篇
地质学   11739篇
海洋学   1119篇
天文学   1702篇
综合类   2175篇
自然地理   1258篇
  2022年   3篇
  2021年   8篇
  2020年   15篇
  2019年   6篇
  2018年   4765篇
  2017年   4048篇
  2016年   2589篇
  2015年   243篇
  2014年   103篇
  2013年   54篇
  2012年   1005篇
  2011年   2744篇
  2010年   2028篇
  2009年   2338篇
  2008年   1916篇
  2007年   2379篇
  2006年   82篇
  2005年   227篇
  2004年   417篇
  2003年   432篇
  2002年   265篇
  2001年   59篇
  2000年   69篇
  1999年   30篇
  1998年   35篇
  1997年   6篇
  1996年   5篇
  1995年   5篇
  1994年   7篇
  1993年   7篇
  1992年   8篇
  1991年   5篇
  1990年   4篇
  1988年   6篇
  1987年   6篇
  1986年   5篇
  1985年   8篇
  1984年   7篇
  1983年   9篇
  1982年   4篇
  1981年   25篇
  1980年   23篇
  1979年   4篇
  1978年   5篇
  1977年   2篇
  1976年   11篇
  1973年   2篇
  1972年   2篇
  1971年   2篇
  1970年   2篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
141.
This paper examines the mechanism controlling the short time-scale variation of sea ice cover over the Southern Ocean. Sea ice concentration and ice velocity datasets derived from images of the Defense Meteorological Satellite Program (DMSP) Special Sensor Microwave Imager (SSM/I) are employed to reveal this mechanism. The contribution of both dynamic and thermodynamic processes to the change in ice edge location is examined by comparing the meridional velocity of ice edge displacement and sea ice drift. In the winter expansion phase, the thermodynamic process of new ice production off the ice edge plays an important role in daily advances of ice cover, whereas daily retreats are mostly due to southward ice drift. On the other hand, both advance and retreat of ice edges in the spring contraction phase are mostly caused by the dynamic process of the ice drift. Based on the above mechanism and the linear relation between the degree of ice production at the ice edge and northward wind speed, the seasonal advance of ice cover can be roughly reproduced using the meridional velocity of ice drift at the ice edge.  相似文献   
142.
Two distinct series of slumps deform the upper part of the sedimentary sequence along the continental margin of the Levant. One series is found along the base of the continental slope, where it overlies the disrupted eastern edge of the Messinian evaporites. The second series of slumps transects the continental margin from the shelf break to the Levant Basin. It seemed that the two series were triggered by two unrelated, though contemporaneous, processes. The shore-parallel slumps were initiated by basinwards flow of the Messinian salt, that carried along the overlying Plio-Quaternary sediments. Seawater that percolated along the detachment faults dissolved the underlying salt to form distinctly disrupted structures. The slope-normal slumps are located on top of large canyons that cut into the pre-Messinian sedimentary rocks. A layer of salt is found in the canyons, and the Plio-Quaternary sediments were deposited on that layer. The slumps are bounded by large, NW-trending faults where post-Messinian faulted offset was measured. We presume that the flow of the salt in the canyons also drives the slope-normal slumps. Thus thin-skinned halokynetic processes generated the composite post-Tortonian structural patterns of the Levant margin. The Phoenician Structures are a prime example of the collapse of a distal continental margin due to the dissolution of a massive salt layer.  相似文献   
143.
High resolution SeaWiFS data was used to detect red tide events that occurred in the Ariake Sound, Japan, a small embayment known as one of the most productive areas in Japan. SeaWiFS chlorophyll data clearly showed that a large red tide event, which damaged seaweed (Nori) cultures, started early in December 2000 in Isahaya Bay, expanded to the whole sound and persisted to the end of February 2001. The monthly average of SeaWiFS data from May 1998 to December 2001 indicated that the chlorophyll peaks appeared twice a year, in early summer and in fall, after the peaks of rain and river discharge. The SeaWiFS data showed that the red tide event during 2000–2001 winter was part of the fall bloom; however, it started later and continued significantly longer than other years. Satellite ocean color data is useful to detect the red tide; however the algorithms require improvement to accurately estimate chlorophyll in highly turbid water and in red tide areas.  相似文献   
144.
Vertical and seasonal characteristics of biogenic silica (BSi) dissolution in seawater were investigated by multiple dissolution experiments using seawater collected from surface and mesopelagic layers in Suruga Bay during the period 2002–2004. The dissolution rate coefficients calculated based on temporal changes of BSi concentration varied with the season of sample collection. They ranged from 0.023–0.057 day− 1 for surface samples and 0.0018–0.0025 day− 1 for mesopelagic samples for temperatures approaching in situ conditions. Experiments at various temperatures confirmed that BSi dissolution depends on temperature in natural seawater. Dissolution rate coefficient (day− 1) of BSi correlated significantly with temperature (°C), and Q10 was 2.6. Addition of bioavailable organic matter to low-bioactivity seawater enhanced the protease activity and abundance of bacteria, and increased BSi dissolution rate by a factor of 1.4–2.0. There is clear evidence that BSi dissolution is accelerated by bacterial activity and potentially limited by bioavailable organic matter in natural seawater. Dissolution rates and total decreases of BSi concentration were lower during experiments using mesopelagic samples than in those using surface samples. This suggests that dissolution of BSi varies with depth and that BSi in the mesopelagic water is more resistant to the dissolution than that in the surface water. This lower dissolution rate was caused by lower temperature and lower bacterial activity due to less bioavailable organic matter in mesopelagic water. Our results provide a mechanistic understanding of variations in silica cycling within the seasonally and vertically differing marine environment.  相似文献   
145.
In order to investigate the mechanism of eutrophication in Atsumi Bay which is a shallow and partially mixed estuary, distributions of temperature, salinity and concentrations of nitrogen and phosphorus in all their chemical forms were observed once a month throughout a year. Supplies of freshwater and nutrients are estimated and balances of salt and nutrients are examined using a modified box model. The deduced estuarine hydrography and calculated values of photosynthesis, decomposition, deposition and sedimentation are compared with those obtained byin situ observations and laboratory experiments. It is found that the factors responsible for the appearance of heavy eutrophication include not only the general increase of nutrient supply from land but also nutrient accumulation in the rainy season just before summer, the N/P ratio of the supply from land being favourable for uptake by phytoplankton, formation of semi-closed circulations of the nutrients associated with stratification and vertical circulation of estuarine water, and possibly the inorganic turnover of phosphorus (PO4-P) under aerobic and anaerobic conditions. The usefulness of the modified box model for obtaining a synoptic understanding of the estuarine system is also demonstrated.  相似文献   
146.
147.
Seasonal evolution of surface mixed layer in the Northern Arabian Sea (NAS) between 17° N–20.5° N and 59° E-69° E was observed by using Argo float daily data for about 9 months, from April 2002 through December 2002. Results showed that during April - May mixed layer shoaled due to light winds, clear sky and intense solar insolation. Sea surface temperature (SST) rose by 2.3 °C and ocean gained an average of 99.8 Wm−2. Mixed layer reached maximum depth of about 71 m during June - September owing to strong winds and cloudy skies. Ocean gained abnormally low ∼18 Wm−2 and SST dropped by 3.4 °C. During the inter monsoon period, October, mixed layer shoaled and maintained a depth of 20 to 30 m. November - December was accompanied by moderate winds, dropping of SST by 1.5 °C and ocean lost an average of 52.5 Wm−2. Mixed layer deepened gradually reaching a maximum of 62 m in December. Analysis of surface fluxes and winds suggested that winds and fluxes are the dominating factors causing deepening of mixed layer during summer and winter monsoon periods respectively. Relatively high correlation between MLD, net heat flux and wind speed revealed that short term variability of MLD coincided well with short term variability of surface forcing.  相似文献   
148.
Spatial and Temporal Variations of Sound Speed at the PN Section   总被引:3,自引:0,他引:3  
Gridded sound speed data were calculated using Del Grosso's formulation from the temperature and salinity data at the PN section in the East China Sea covering 92 cruises between February 1978 and October 2000. The vertical gradients of sound speed are mainly related to the seasonal variations, and the strong horizontal gradients are mainly related to the Kuroshio and the upwelling. The standard deviations show that great variations of sound speed exist in the upper layer and in the slope zone. Empirical orthogonal function analysis shows that contributions of surface heating and the Kuroshio to sound speed variance are almost equivalent. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
149.
Hydrographic data and composite current velocity data (ADCP and GEK) were used to examine the seasonal variations of upper-ocean flow in the southern sea area of Hokkaido, which includes the “off-Doto” and “Hidaka Bay” areas separated by Cape Erimo. During the heating season (April–September), the outflow of the Tsugaru Warm Current (TWC) from the Tsugaru Strait first extends north-eastward, and then one branch of TWC turns to the west along the shelf slope after it approaches the Hidaka Shelf. The main flow of TWC evolves continuously, extending eastward as far as the area off Cape Erimo. In the late cooling season (January–March), part of the Oyashio enters Hidaka Bay along the shallower part of the shelf slope through the area off Cape Erimo, replacing almost all of the TWC water, and hence the TWC devolves. It is suggested that the bottom-controlled barotropic flow of the Oyashio, which may be caused by the small density difference between the Oyashio and the TWC waters and the southward migration of main front of TWC, permits the Oyashio water to intrude along the Hidaka shelf slope.  相似文献   
150.
Gymnodinium mikimotoi, a senior synonym ofGymnodinium nagasakiense often causes red tides in coastal waters of the western part of Japan. The photosynthetic pigment composition of two strains ofG. mikimotoi were analyzed by HPLC. They contain chlorophyllc 3 which has not been reported from dinoflagellates. They also contain fucoxanthin, 19'-hexanoyloxyfucoxanthin and 19'-butanoyloxyfucoxanthin as major carotenoides, which are anomalous in dinoflagellates. The pigment composition ofG. mikimotoi is compared with that ofGyrodinium aureolum which occur in European waters and is thought as a conspecific species withG. mikimotoi by several authors.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号