首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   171篇
  免费   2篇
  国内免费   1篇
测绘学   1篇
大气科学   7篇
地球物理   36篇
地质学   40篇
海洋学   35篇
天文学   35篇
自然地理   20篇
  2024年   1篇
  2022年   2篇
  2018年   6篇
  2017年   5篇
  2016年   6篇
  2015年   3篇
  2014年   4篇
  2013年   4篇
  2012年   1篇
  2011年   5篇
  2010年   2篇
  2009年   5篇
  2008年   4篇
  2007年   1篇
  2006年   4篇
  2005年   5篇
  2004年   8篇
  2003年   10篇
  2002年   6篇
  2001年   4篇
  2000年   1篇
  1999年   3篇
  1998年   4篇
  1997年   7篇
  1996年   3篇
  1995年   5篇
  1994年   4篇
  1993年   3篇
  1992年   6篇
  1991年   1篇
  1990年   2篇
  1989年   3篇
  1988年   3篇
  1987年   5篇
  1986年   5篇
  1985年   3篇
  1984年   3篇
  1983年   2篇
  1982年   2篇
  1981年   7篇
  1980年   4篇
  1979年   2篇
  1978年   1篇
  1977年   1篇
  1976年   2篇
  1975年   1篇
  1974年   2篇
  1972年   1篇
  1971年   1篇
  1967年   1篇
排序方式: 共有174条查询结果,搜索用时 15 毫秒
91.
With a view to investigate variations in parameters of coronal emission lines over a large range of radial distance from the limb, raster scans were made with sufficiently long exposure times on several days during September – October 2003. An analysis of the data shows that (i) in most of the coronal structures, the FWHM of the Fe xiv 5303 Å line decreases up to 300″±50″, (ii) the FWHM of the Fe x 6374 Å line increases up to about 200″ and then remains unchanged up to about 500″, and (iii) the FWHMs of the Fe xi 7892 Å and Fe xiii 10747 Å lines show an intermediate behaviour with height. The analysis of the data also shows that the ratio of FWHM of 6374 Å to that of 5303 Å increases from 0.93 at the limb to 1.18 at 200″ above the limb. From this and the ratio of intensities of the two lines we infer that the plasma in steady coronal structures at a height of about 200″ has a temperature of about 1.5 MK and a non-thermal velocity around 17 km s?1. The observations also show that non-homogeneous temperatures and non-thermal velocities largely exist in the lower corona up to about 300″±100″ above the limb. Amplitudes of variations in FWHM of different emission lines with height in the coronal loops are similar to those in the diffuse plasma around the coronal loops.  相似文献   
92.
93.
Albite porphyroblasts in a basic schist of the Sambagawa metamorphic belt (Besshi—Bashi, Central Shikoku) show zonal variation of inclusions defined by inclusion-free mantles and inclusion-rich cores, though matrix minerals are partly incorporated in the outer zones of the mantles. From comparison of the crystallographic and dimensional fabrics of inclusion and matrix epidote, it has been concluded that the orientation of the principal axes of strain was different for the deformation of matrix fabrics and inclusion fabrics (fabrics produced before formation of cores). Inclusion amphibole in the cores belongs to the actinolite—common hornblende group, with Si content more than 7.0, whereas amphibole in the matrix and outer zones of mantles belongs to the common hornblende group, with Si content less than 7.1. This shows that the metamorphic temperature was higher during the phase of formation of the outer zones of the mantles than during that of the cores. The average direction of maximum growth of the mantles, which has been estimated from differences between the average shapes of porphyroblasts and those of cores, is parallel to the linear orientation of amphibole and epidote in the matrix. The average direction of minimum growth of the mantles coincides with the normal to the schistosity of the matrix. The mantles appear to be of the same generation as the matrix fabrics.  相似文献   
94.
Numerical experiments with a multi-level general circulation model have been performed to investigate basic processes of westward propagation of Rossby waves excited by interannual wind stress forcing in an idealized western North Pacific model with ocean ridges. When the wind forcing with an oscillation period of 3 years is imposed around 180°E and 30°N, far from Japan, barotropic waves excited by the wind can hardly cross the ridges, such as the Izu-Ogasawara Ridge. On the other hand, a large part of the first-mode baroclinic waves are transmitted across the ridges, having net mass transport. The propagation speed of the first-mode baroclinic wave is accelerated (decelerated) when an anticyclonic (cyclonic) circulation is formed at the sea surface, due to a deeper (shallower) upper layer, and to southward (slightly northward) drift of the circulation. Thus, when the anticyclonic circulation is formed on the northern side of the cyclonic one, they propagate almost together. The second-mode baroclinic waves converted from the first-mode ones on the ridges arrive south of Japan, although their effects are small. The resulting volume transport variation of the western boundary current (the Kuroshio) reaches about 60% of the Sverdrup transport variability estimated from the wind stress. These characteristics are common for the interannual forcing case with a longer oscillation period. In the intraseasonal and seasonal forcing cases, on the other hand, the transport variation is much smaller than those in the interannual forcing cases. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
95.
A clear later phase of amplitude larger than the direct surface wave packet was observed at stations in Hokkaido, Japan, for several events of the December 1991 off-Urup earthquake swarm in the Kuril Islands region. From its particle motion, this phase is likely to be a fundamental Rayleigh wave packet that arrived with an azimuth largely deviated from each great-circle direction. As its origin, Nakanishi (1992) proposed that the sea-trench topography in this area as deep as 10 km may produce a narrow zone of low velocity for Rayleigh waves of periods around 15 sec. Following this idea, we compute ray paths and estimate how Rayleigh waves would propagate if we assume that lateral velocity variations are caused only by seafloor topography. We confirm that thick sea water in the trench indeed produces the phase velocity of Rayleigh waves to be smaller than in a surrounding area by the degree over 100%. Such a low-velocity zone appears only in a period range from 12 to 20 sec. Although this strong low-velocity zone disturbs the direction of Rayleigh wave propagation from its great circle, the overall ray paths are not so affected as far as an epicentre is outside this low-velocity zone, that is, off the trench axis. In contrast, the majority of rays are severely distorted for an event within the low-velocity zone or, in other words, in the neighborhood of the trench axis. For such an event, a part of wave energy appears to be trapped in this zone and eventually propagates outwards due to the curvature or bend of trench geometry, resulting in very late arriving waves of large amplitude with an incident direction clearly different from great circles. This phenomenon is observed only at a very limited period range around 16 sec. These theoretical results are consistent with the above mentioned observation of Nakanishi (1992).  相似文献   
96.
The dynamics of the wind-driven circulations and surface transport processes in Suruga Bay have been examined by performing numerical experiments. While strong winds exist outside the bay, the winds inside the bays are greatly reduced, which generates a strong wind stress curl in winter and autumn. In particular, in winter, a strong positive curl region is located across the bay mouth, and a strong surface circulation with counterclockwise rotation is generated beneath it. The circulation is nearly geostrophic, but is not affected by the bottom topography in the deep bay. It is suggested that intense surface water exchange through the bay mouth occurs in winter, whereas it is not active in the other seasons when no significant vorticity is supplied on the bay mouth from the atmosphere. Moreover, we propose a hypothesis that the atmospheric wind stress curl will cause the frequent appearance of the counterclockwise circulation in winter in the real ocean.  相似文献   
97.
We have investigated the spreading of river water in Suruga Bay by performing numerical experiments and conducting field surveys with drifting buoys. There are clear seasonal variations in the large river discharges into the bay: increased discharge in the rainy summer season and decreased discharge in the dry winter season. The numerical model reproduces the main feature that has been observed in the actual sea: the river water extends gradually from the northwestern to the southeastern regions in the bay, especially in summer. The river water spreading is greatly influenced by the bottom topography of the bay: the Fuji River water spreads over a deep continental slope as a surface-advected plume and extends well offshore, since a large bulge (anticyclonic eddy at the river mouth) extends well offshore and effectively transports the river water offshore. On the other hand, the Oi River water tends to flow parallel to isobaths (along a coastline) on a shallow continental shelf as a bottomadvected plume. Moreover, the influences of seasonal variations in the stratification and a bay-scale, wind-driven circulation are also investigated. Trajectories of the drifting buoys, which were released around the Fuji River mouth, certainly suggest that the bulge exists there.  相似文献   
98.
Hydrographic observations were made in Otsuchi Bay on the Sanriku ria coast, Japan, to provide clear images of the baroclinic circulation extending over the bay together with the associated intrusion of lower-layer water (bottom water) from outside the bay. In summer, a prominent baroclinic circulation with flow speeds \({>} 0.1\ \text{ m }\ \text{ s }^{-1} \) extends over the greater part of the bay. A main pycnocline (thermocline), which separates the upper and lower layers, is located at a depth of 15–40 m in and around the bay. The direction of the lower-layer flow (inflow into and outflow from the bay) is opposite to that of the upper-layer flow, which are baroclinically coupled to each other. Moreover, with regard to the lower-layer flow, the inflow tends to occur mainly through the northwestern part of the bay mouth, whereas the outflow tends to occur mainly through the southeastern part. The inflow and outflow alternate on time scales of several to a few tens of hours, and the flow directions are sometimes related to the tidal ones, although the relationship is not applied persistently. In winter, the baroclinic circulation is considerably weaker than in summer, because the stratification breaks down.  相似文献   
99.
This paper presents the results of a detailed survey combining Seabeam mapping, gravity and geomagnetic measurements as well as single-channel seismic reflection observations in the Japan Trench and the juncture with the Kuril Trench during the French-Japanese Kaiko project (northern sector of the Leg 3) on the R/V “Jean Charcot”. The main data acquired during the cruise, such as the Seabeam maps, magnetic anomalies pattern, and preliminary interpretations are discussed. These new data cover an area of 18,000 km2 and provide for the first time a detailed three-dimensional image of the Japan Trench. Combined with the previous results, the data indicate new structural interpretations. A comparative study of Seabeam morphology, single-channel and reprocessed multichannel records lead to the conclusion that along the northern Japan Trench there is little evidence of accretion but, instead, a tectonic erosion of the overriding plate. The tectonic pattern on the oceanic side of the trench is controlled by the creation of new normal faults parallel to the Japan Trench axis, which is a direct consequence of the downward flexure of the Pacific plate. In addition to these new faults, ancient normal faults trending parallel to the N65° oceanic magnetic anomalies and oblique to the Japan trench axis are reactivated, so that two directions of normal faulting are observed seaward of the Japan Trench. Only one direction of faulting is observed seaward of the Kuril Trench because of the parallelism between the trench axis and the magnetic anomalies. The convergent front of the Kuril Trench is offset left-laterally by 20 km relative to those of the Japan Trench. This transform fault and the lower slope of the southernmost Kuril Trench are represented by very steep scarps more than 2 km high. Slightly south of the juncture, the Erimo Seamount riding on the Pacific plate, is now entering the subduction zone. It has been preceded by at least another seamount as revealed by magnetic anomalies across the landward slope of the trench. Deeper future studies will be necessary to discriminate between the two following hypothesis about the origin of the curvature between both trenches: Is it due to the collision of an already subducted chain of seamounts? or does it correspond to one of the failure lines of the America/Eurasia plate boundary?  相似文献   
100.
We have obtained spectroscopic observations in coronal emission lines by choosing two lines simultaneously, one [Fe x] 6374 Å and the other [Fe xi] 7892 Å or [Fe xiii] 10747 Å or [Fe xiv] 5303 Å. We found that in 95 per cent of the coronal loops observed in 6374 Å, the FWHM of the emission line increases with height above the limb irrespective of the size, shape and orientation of the loop and that in case of 5303 Å line decreases with height in about 89 per cent of the coronal loops. The FWHM of 7892 Å and 10747 Å emission lines show intermediate behavior. The increase in the FWHM of 6374 Å line with height is the steepest among these four lines. We have also studied the intensity ratio and ratio of FWHM of these lines with respect to those of 6374 Å as a function height above the limb. We found that the intensity ratio of 7892 Å and 10747 Å lines with respect to 6374 Å line increases with height and that of 5303 Å to 6374 Å decreases with height above the limb. This implies that temperature in coronal loops will appear to increase with height in the intensity ratio plots of 7892 Å and 6374 Å; and 10747 Å and 6374 Å whereas it will appear to decrease with height in intensity ratio of 5303 Å to 6374 Å lineversus height plot. These findings are up to a height of about 200 arcsec above the limb. The varying ratios with height indicate that relatively hotter and colder plasma in coronal loops interact with each other. Therefore, the observed increase in FWHM with height above the limb of coronal emission lines associated with plasma at about 1 MK may not be due to increase in non-thermal motions caused by coronal waves but due to interaction with the relatively hotter plasma. These findings also do not support the existing coronal loop models, which predict an increase in temperature of the loop with height above the limb.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号