首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   129篇
  免费   2篇
测绘学   1篇
大气科学   10篇
地球物理   15篇
地质学   25篇
海洋学   72篇
天文学   6篇
综合类   1篇
自然地理   1篇
  2020年   1篇
  2017年   1篇
  2016年   5篇
  2015年   5篇
  2014年   3篇
  2013年   3篇
  2012年   4篇
  2011年   5篇
  2010年   7篇
  2009年   14篇
  2008年   4篇
  2007年   10篇
  2006年   9篇
  2005年   5篇
  2004年   7篇
  2003年   4篇
  2002年   4篇
  2001年   4篇
  2000年   4篇
  1999年   1篇
  1998年   5篇
  1996年   3篇
  1994年   2篇
  1993年   1篇
  1992年   4篇
  1991年   1篇
  1990年   2篇
  1988年   2篇
  1987年   2篇
  1986年   1篇
  1985年   1篇
  1984年   2篇
  1981年   2篇
  1980年   1篇
  1979年   1篇
  1977年   1篇
排序方式: 共有131条查询结果,搜索用时 62 毫秒
91.
Relations between sea-surface temperature (T s) and heat flux at the sea surface (F) have been investigated using data from ocean observation buoys located off Shikoku in the Sea of Japan and in the East China Sea. Wavelet transformation decomposed F and T s to wavelet coefficients (WLC) in the period-time domain. Assuming one-dimensional heat transfer by eddy diffusion in the upper ocean, the phase difference (δθ) defined as the difference between the phase of the temporal change rate of T s, and the phase of F ranges statistically from 0 to +π/4 when F changes T s, and is around −π/2 when heat convergence in the sea (Av) forces T s. The δθ values are distributed from 0 to +π/4 at one-day and one-year periods at all buoys. WLC amplitude (WLCA) of F at periods from 16 to 32 day periods, which may be caused by the atmospheric ridge-trough systems, maintains energy longer than WLCA at periods from 2 to 16 days, which may be caused by monsoonal surges. At periods from 2 to 64 days, δθ values distribute from 0 to +π/4 or around −π/2 at each event, reflecting the surroundings of each ocean, i.e., Kuroshio recirculation in the off-Shikoku area, water-temperature front in the Sea of Japan, and water exchange in the continental shelf edge in the East China Sea. We demonstrate that the wavelet analysis can characterize the correspondence between irregular signals of F and T s in various time scales and locations. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
92.
The authors have verified a regression model for the evaluation of the daily amplitude of sea surface temperature (ΔSST) proposed by Kawai and Kawamura (2002). The authors investigated the accuracy of satellite data used for the evaluation and showed that ΔSST error caused by satellite data error is less than ±0.7 K. The evaluated ΔSSTs were compared with in situ values. Its root-mean-square error is about 0.3 K or less, except for a coastal region, and it has a bias of more than +0.1 K in the tropics. This bias can be removed by considering latent heat flux. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
93.
Marine aerosol samples collected from the North Pacific atmosphere were studied for molecular distributions of dicarboxylic acids by using a capillary gas chromatography and mass spectrometery. A homologous series of dicarboxylic acids (C2–C10) was detected in the marine aerosol samples as dibutyl esters. All the samples showed that the smallest diacid (oxalic acid: C2) was the most abundant and comprised 41–67% of the total diacids. The second most abundant species was malonic acid (C3) or succinic acid (C4). The diacids with more carbon numbers were generally less abundant. Total diacid concentration range was 17–1040 ng m–3, which accounted for up to 1.6% of total aerosol mass. This indicates that low molecular weight dicarboxylic acids are important class of organic compounds in the marine atmosphere. The concentrations were generally higher in the western North Pacific and lower in the central North Pacific. The major portion of diacids is probably derived from the Asian Continent and East Asian countries by long-range atmospheric transport and partly fromin situ photochemical production in the marine atmosphere.  相似文献   
94.
The Visible and Infrared Scanner (VIRS) aboard the Tropical Rainfall Measuring Mission (TRMM) is a five-channel radiometer with wavelength from 0.6 to 12 μm. Daily 0.125° sea surface temperature (SST) data from VIRS were first produced at the National Space Development Agency (NASDA) for comparison with SST from TRMM Microwave Imager (TMI). In order to obtain accurate high spatial resolution SST for the merging of SST from infrared and microwave measurements, new SST retrieval coefficients of the Multichannel SST (MCSST) algorithm were generated using the global matchups from VIRS brightness temperature (BT) and Global Telecommunications System (GTS) SST. Cloud detection was improved and striping noise was eliminated. One-year global VIRS level-1B data were reprocessed using the MCSST algorithm and the advanced cloud/noise treatments. The bias and standard deviation between VIRS split-window SST and in situ SST are 0.10°C and 0.63°C, and for triple-window SST, are 0.06°C and 0.48°C. The results indicate that the reprocessing algorithm is capable of retrieving high quality SST from VIRS data. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
95.
To use two small fish Rivulus marmoratus (Cyprinodontiformes, Rivulidae) and the Japanese medaka Oryzias latipes (Belloniformes) as testing models in molecular ecotoxicology, we have cloned the cytochrome P450 1A (CYP1A) gene after screening of both genomic DNA libraries, and sequenced 11,863 and 7,243 bp including all the exons and introns with promoter regions, respectively. The Rivulus and the medaka CYP1A gene consisted of seven exons (including non-coding exons) with high homology to mammals. In the promoter region, Rivulus CYP1A gene has seven xenobiotic response elements (XREs) and two metal response elements (MREs), while the Japanese medaka CYP1A gene has six XREs and four MREs. Interestingly, medaka CYP1A gene has a number of MREs at the promoter, which may affect its response on metal exposure. We describe here the gene structure of both fish CYP1A genes.  相似文献   
96.
Principal component analysis (PCA) was applied to the displacement field recorded at 147 GPS stations in the Kanto-Tokai district, Japan, for the period from January 1999 to February 2003. Some prominent geophysical events occurred during this period. Using PCA, we attempted to decompose the displacement field into some representative spatial modes and their corresponding temporal modes to quantitatively extract the primary geophysical events that have caused rapid crustal deformation in this region. The displacement field was roughly decomposed into modes corresponding to the following three major events: (1) The Miyake-Kozu volcanic event, which occurred in the region south of Tokyo in 2000. It included large-scale dyke intrusion and intensive earthquake swarm between the Miyakejima and Kozushima islands. (2) The Tokai slow-slip event, which is considered to have begun just after the Miyake-Kozu volcanic event and is ongoing as of November 2005. It occurred on the boundary between the subducting Philippine Sea Plate and the overriding Eurasian (Amurian) Plate in the Tokai district. (3) The Boso slow-slip event, which lasted for approximately 10 days in October 2002. It occurred on the boundary between the subducting Pacific Plate and the overriding North American Plate near the Boso Peninsula. In the decomposition process, we combined the mode-rotation technique with ordinary PCA. This is because PCA causes contamination between modes, i.e., a mode obtained with PCA is contaminated by other modes. For example, the first principal mode corresponding to the Miyake-Kozu volcanic event, which is by far the largest in magnitude, was clearly seen in many other modes. In order to remove such contamination, we applied the mode-rotation technique, in which the principal axes derived from PCA are rotated so as to minimize the correlation coefficients between different temporal modes for a time period in which some prominent change occurs. Combining the mode-rotation technique with PCA exhibited a better performance in separating the displacement field.  相似文献   
97.
Producing high-quality match-ups coupling the Japanese geostationary satellite, Himawari-6 (H6), and buoy SST observations, we have developed the new SST retrieval method. Kawamura et al. (2010) developed the previous version of SST product called MTSAT SST, which left several scientific/technical questions. For solving them, 6,711 algorithm tuning match-ups with precise navigation and 240,476 validation match-ups are generated for covering all seasons and wide ocean coverage. For discriminating the previous MTSAT SST, we call the new version of SST H6 SST. It is found that the SZA dependences of MTSAT SST algorithm are different from area to area of SZA > 40–50° N/S. The regionally different SZA dependences are treated by dividing the H6 disk coverage into five areas by the latitude lines of 40° N/S first and the longitude lines of 100° K and 180° K. Using the algorithm tuning match-ups, Nonlinear SST (NLSST) equations are derived for all of the five areas. Though the sun zenith angle dependency correction term is also examined, there is no significant regional difference. Therefore, this term is used in the H6 SST algorithm again. The new H6 SST equation is formed by the areal NLSST and the sun zenith angle dependency term for each area. The statistical evaluation of H6 SST using the validation match-ups show the small negative biases and the RMS errors of about 0.74° K for each area. For the full H6 disk, the bias is −0.1° K and the RMS error 0.74° K. The histogram of H6 SST minus the in situ SST for each area has a similar Gaussian shape with small negative skewness, and the monthly validation of H6 SST for each area is consistent with those for the whole period and the histograms  相似文献   
98.
A numerical experiment is carried out to reproduce distribution of concentration of 90Sr and 137Cs, estimate their total amount and verify their source in the Japan Sea. Model results are in good agreement with observational findings in the Japan Sea expeditions between 1997 and 2002 by the Japan Atomic Energy Agency. Vertical profiles of the concentration of 90Sr and 137Cs show exponential decreases with depth from the sea surface to the sea bottom. From the model and observational results, it is suggested that the concentration of 90Sr and 137Cs in the surface layer is approximately in the range of 1.0–1.5 Bq/m3 and 2.0–2.5 Bq/m3, respectively. On the other hand, it is found that the concentration in the intermediate and deep layer is higher than that observed in the northwestern Pacific Ocean, suggesting active winter convection in the Japan Sea. The total amount of 90Sr and 137Cs in the seawater is evaluated to be 1.34 × 1015 Bq and 2.02 × 1015 Bq, respectively, in the numerical experiment, which demonstrates an estimation by observational data obtained in the Japan Sea expeditions. The total amount of 90Sr and 137Cs changed during the second half of 20th century corresponding to deposition at the sea surface with the maximums of 4.86 × 1015 Bq for 90Sr and 7.33 × 1015 Bq for 137Cs, respectively, in the mid-1960s. The numerical experiment suggests that the main source of 90Sr and 137Cs has been global fallout, although there have been some potential sources in the Japan Sea.  相似文献   
99.
SST Availabilities of Satellite Infrared and Microwave Measurements   总被引:5,自引:1,他引:5  
To investigate the feasibility and methodology of new generation sea surface temperature (SST) maps that combine various satellite measurements, we have quantitatively evaluated SST availabilities of NOAA AVHRR (National Oceanic and Atmospheric Administration, Advanced Very High Resolution Radiometer), GMS S-VISSR (Geostationary Meteorological Satellite, Stretched-Visible Infrared Spin Scan Radiometer) and TRMM MI (Tropical Rainfall Measuring Mission, Microwave Imager: TMI), during the one-year period from October 1999 to September 2000. The advantage of satellite microwave SST measurements is the ability to penetrate the clouds that contaminate satellite infrared measurements. Daily SST availabilities were calculated in the overlapping coverage from 20°N to 38°N and 120°E to 160°E. The annual-mean SST availabilities of AVHRR, S-VISSR and TMI are 48%, 56% and 78%, respectively. There are large seasonal variations in the availabilities of infrared measurements. The latitude-time plots of one-degree zonal mean SST availabilities of S-VISSR and TMI in the region from 38°S to 38°N and 80°E to 160°W show significant zonal variations, which are influenced by the atmospheric circulation such as the Subtropical High and the Intertropical Convergence Zone. The SST availabilities of S-VISSR and TMI in the five selected regions have large regional variations, ranging from 35% to 74% and 62% to 88% for S-VISSR and TMI, respectively. The present statistical analyses of SST availabilities in the infrared and microwave measurements indicate that 1) a daily cloud-free high-spatial resolution may be achieved by merging various SST measurements since their deficiencies compensate each other, and 2) nevertheless, it is necessary to take account of the seasonal and regional variations of SST availabilities of different satellite sensors for the development of merging technology. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
100.
The Global Ocean Data Assimilation Experiment (GODAE) requires the availability of a global analyzed SST field with high-resolution in space (at least 10 km) and time (at least 24 hours). The new generation SST products would be based on the merging of SSTs from various satellites data and in situ measurements. The merging of satellite infrared and microwave SST data is investigated in this paper. After pre-processing of the individual satellite data, objective analysis was applied to merge the SST data from NOAA AVHRR (National Oceanic and Atmospheric Administration, Advanced Very High Resolution Radiometer), GMS S-VISSR (Geostationary Meteorological Satellite, Stretched-Visible Infrared Spin Scan Radiometer), TRMM MI (Tropical Rainfall Measuring Mission, Microwave Imager: TMI) and VIRS (Visible and Infrared Scanner). The 0.05° daily cloud-free SST products were generated in three regions, viz., the Kuroshio region, the Asia-Pacific Region and the Pacific, during one-year period of October 1999 to September 2000. Comparisons of the merged SSTs with Japan Meteorological Agency (JMA) buoy SSTs show that, with considerable error sources from individual satellite data and merging procedure, an accuracy of 0.95 K is achieved. The results demonstrate the practicality and advantages of merging SST measurements from various satellite sensors.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号