全文获取类型
收费全文 | 31843篇 |
免费 | 484篇 |
国内免费 | 390篇 |
专业分类
测绘学 | 803篇 |
大气科学 | 2902篇 |
地球物理 | 6574篇 |
地质学 | 11094篇 |
海洋学 | 2489篇 |
天文学 | 6854篇 |
综合类 | 74篇 |
自然地理 | 1927篇 |
出版年
2020年 | 186篇 |
2019年 | 205篇 |
2018年 | 505篇 |
2017年 | 498篇 |
2016年 | 706篇 |
2015年 | 461篇 |
2014年 | 699篇 |
2013年 | 1442篇 |
2012年 | 756篇 |
2011年 | 1060篇 |
2010年 | 915篇 |
2009年 | 1280篇 |
2008年 | 1101篇 |
2007年 | 979篇 |
2006年 | 1086篇 |
2005年 | 913篇 |
2004年 | 872篇 |
2003年 | 898篇 |
2002年 | 894篇 |
2001年 | 759篇 |
2000年 | 811篇 |
1999年 | 675篇 |
1998年 | 645篇 |
1997年 | 687篇 |
1996年 | 588篇 |
1995年 | 550篇 |
1994年 | 502篇 |
1993年 | 440篇 |
1992年 | 435篇 |
1991年 | 429篇 |
1990年 | 428篇 |
1989年 | 407篇 |
1988年 | 390篇 |
1987年 | 479篇 |
1986年 | 442篇 |
1985年 | 481篇 |
1984年 | 585篇 |
1983年 | 580篇 |
1982年 | 523篇 |
1981年 | 510篇 |
1980年 | 463篇 |
1979年 | 441篇 |
1978年 | 458篇 |
1977年 | 405篇 |
1976年 | 364篇 |
1975年 | 364篇 |
1974年 | 414篇 |
1973年 | 395篇 |
1972年 | 249篇 |
1971年 | 228篇 |
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
101.
Concrete probes in civil engineering material testing often show fissures or hairline-cracks. These cracks develop dynamically. Starting at a width of a few microns, they usually cannot be detected visually or in an image of a camera imaging the whole probe. Conventional image analysis techniques will detect fissures only if they show a width in the order of one pixel. To be able to detect and measure fissures with a width of a fraction of a pixel at an early stage of their development, a cascaded image analysis approach has been developed, implemented and tested. The basic idea of the approach is to detect discontinuities in dense surface deformation vector fields. These deformation vector fields between consecutive stereo image pairs, which are generated by cross correlation or least squares matching, show a precision in the order of 1/50 pixel. Hairline-cracks can be detected and measured by applying edge detection techniques such as a Sobel operator to the results of the image matching process. Cracks will show up as linear discontinuities in the deformation vector field and can be vectorized by edge chaining. In practical tests of the method, cracks with a width of 1/20 pixel could be detected, and their width could be determined at a precision of 1/50 pixel. 相似文献
102.
Phase center modeling for LEO GPS receiver antennas and its impact on precise orbit determination 总被引:7,自引:5,他引:7
Adrian Jäggi R. Dach O. Montenbruck U. Hugentobler H. Bock G. Beutler 《Journal of Geodesy》2009,83(12):1145-1162
Most satellites in a low-Earth orbit (LEO) with demanding requirements on precise orbit determination (POD) are equipped with
on-board receivers to collect the observations from Global Navigation Satellite systems (GNSS), such as the Global Positioning
System (GPS). Limiting factors for LEO POD are nowadays mainly encountered with the modeling of the carrier phase observations,
where a precise knowledge of the phase center location of the GNSS antennas is a prerequisite for high-precision orbit analyses.
Since 5 November 2006 (GPS week 1400), absolute instead of relative values for the phase center location of GNSS receiver
and transmitter antennas are adopted in the processing standards of the International GNSS Service (IGS). The absolute phase
center modeling is based on robot calibrations for a number of terrestrial receiver antennas, whereas compatible antenna models
were subsequently derived for the remaining terrestrial receiver antennas by conversion (from relative corrections), and for
the GNSS transmitter antennas by estimation. However, consistent receiver antenna models for space missions such as GRACE
and TerraSAR-X, which are equipped with non-geodetic receiver antennas, are only available since a short time from robot calibrations.
We use GPS data of the aforementioned LEOs of the year 2007 together with the absolute antenna modeling to assess the presently
achieved accuracy from state-of-the-art reduced-dynamic LEO POD strategies for absolute and relative navigation. Near-field
multipath and cross-talk with active GPS occultation antennas turn out to be important and significant sources for systematic
carrier phase measurement errors that are encountered in the actual spacecraft environments. We assess different methodologies
for the in-flight determination of empirical phase pattern corrections for LEO receiver antennas and discuss their impact
on POD. By means of independent K-band measurements, we show that zero-difference GRACE orbits can be significantly improved
from about 10 to 6 mm K-band standard deviation when taking empirical phase corrections into account, and assess the impact
of the corrections on precise baseline estimates and further applications such as gravity field recovery from kinematic LEO
positions. 相似文献
103.
Many regions around the world require improved gravimetric data bases to support very accurate geoid modeling for the modernization
of height systems using GPS. We present a simple yet effective method to assess gravity data requirements, particularly the
necessary resolution, for a desired precision in geoid computation. The approach is based on simulating high-resolution gravimetry
using a topography-correlated model that is adjusted to be consistent with an existing network of gravity data. Analysis of
these adjusted, simulated data through Stokes’s integral indicates where existing gravity data must be supplemented by new
surveys in order to achieve an acceptable level of omission error in the geoid undulation. The simulated model can equally
be used to analyze commission error, as well as model error and data inconsistencies to a limited extent. The proposed method
is applied to South Korea and shows clearly where existing gravity data are too scarce for precise geoid computation. 相似文献
104.
D. Rieke-Zapp W. Tecklenburg J. Peipe H. Hastedt Claudia Haig 《ISPRS Journal of Photogrammetry and Remote Sensing》2009,64(3):248-258
Recent tests on the geometric stability of several digital cameras that were not designed for photogrammetric applications have shown that the accomplished accuracies in object space are either limited or that the accuracy potential is not exploited to the fullest extent. A total of 72 calibrations were calculated with four different software products for eleven digital camera models with different hardware setups, some with mechanical fixation of one or more parts. The calibration procedure was chosen in accord to a German guideline for evaluation of optical 3D measuring systems [VDI/VDE, VDI/VDE 2634 Part 1, 2002. Optical 3D Measuring Systems–Imaging Systems with Point-by-point Probing. Beuth Verlag, Berlin]. All images were taken with ringflashes which was considered a standard method for close-range photogrammetry. In cases where the flash was mounted to the lens, the force exerted on the lens tube and the camera mount greatly reduced the accomplished accuracy. Mounting the ringflash to the camera instead resulted in a large improvement of accuracy in object space. For standard calibration best accuracies in object space were accomplished with a Canon EOS 5D and a 35 mm Canon lens where the focusing tube was fixed with epoxy (47 μm maximum absolute length measurement error in object space). The fixation of the Canon lens was fairly easy and inexpensive resulting in a sevenfold increase in accuracy compared with the same lens type without modification. A similar accuracy was accomplished with a Nikon D3 when mounting the ringflash to the camera instead of the lens (52 μm maximum absolute length measurement error in object space). Parameterisation of geometric instabilities by introduction of an image variant interior orientation in the calibration process improved results for most cameras. In this case, a modified Alpa 12 WA yielded the best results (29 μm maximum absolute length measurement error in object space). Extending the parameter model with FiBun software to model not only an image variant interior orientation, but also deformations in the sensor domain of the cameras, showed significant improvements only for a small group of cameras. The Nikon D3 camera yielded the best overall accuracy (25 μm maximum absolute length measurement error in object space) with this calibration procedure indicating at the same time the presence of image invariant error in the sensor domain. Overall, calibration results showed that digital cameras can be applied for an accurate photogrammetric survey and that only a little effort was sufficient to greatly improve the accuracy potential of digital cameras. 相似文献
105.
Background
Forest fuel treatments have been proposed as tools to stabilize carbon stocks in fire-prone forests in the Western U.S.A. Although fuel treatments such as thinning and burning are known to immediately reduce forest carbon stocks, there are suggestions that these losses may be paid back over the long-term if treatments sufficiently reduce future wildfire severity, or prevent deforestation. Although fire severity and post-fire tree regeneration have been indicated as important influences on long-term carbon dynamics, it remains unclear how natural variability in these processes might affect the ability of fuel treatments to protect forest carbon resources. We surveyed a wildfire where fuel treatments were put in place before fire and estimated the short-term impact of treatment and wildfire on aboveground carbon stocks at our study site. We then used a common vegetation growth simulator in conjunction with sensitivity analysis techniques to assess how predicted timescales of carbon recovery after fire are sensitive to variation in rates of fire-related tree mortality, and post-fire tree regeneration.Results
We found that fuel reduction treatments were successful at ameliorating fire severity at our study site by removing an estimated 36% of aboveground biomass. Treated and untreated stands stored similar amounts of carbon three years after wildfire, but differences in fire severity were such that untreated stands maintained only 7% of aboveground carbon as live trees, versus 51% in treated stands. Over the long-term, our simulations suggest that treated stands in our study area will recover baseline carbon storage 10?C35?years more quickly than untreated stands. Our sensitivity analysis found that rates of fire-related tree mortality strongly influence estimates of post-fire carbon recovery. Rates of regeneration were less influential on recovery timing, except when fire severity was high.Conclusions
Our ability to predict the response of forest carbon resources to anthropogenic and natural disturbances requires models that incorporate uncertainty in processes important to long-term forest carbon dynamics. To the extent that fuel treatments are able to ameliorate tree mortality rates or prevent deforestation resulting from wildfire, our results suggest that treatments may be a viable strategy to stabilize existing forest carbon stocks. 相似文献106.
A new method is presented for the computation of the gravitational attraction of topographic masses when their height information is given on a regular grid. It is shown that the representation of the terrain relief by means of a bilinear surface not only offers a serious alternative to the polyhedra modeling, but also approaches even more smoothly the continuous reality. Inserting a bilinear approximation into the known scheme of deriving closed analytical expressions for the potential and its first-order derivatives for an arbitrarily shaped polyhedron leads to a one-dimensional integration with – apparently – no analytical solution. However, due to the high degree of smoothness of the integrand function, the numerical computation of this integral is very efficient. Numerical tests using synthetic data and a densely sampled digital terrain model in the Bavarian Alps prove that the new method is comparable to or even faster than a terrain modeling using polyhedra. 相似文献
107.
Omitted variables and measurement errors in explanatory variables frequently occur in hedonic price models. Ignoring these problems leads to biased estimators. In this paper, we develop a constrained autoregression–structural equation model (ASEM) to handle both types of problems. Standard panel data models to handle omitted variables bias are based on the assumption that the omitted variables are time-invariant. ASEM allows handling of both time-varying and time-invariant omitted variables by constrained autoregression. In the case of measurement error, standard approaches require additional external information which is usually difficult to obtain. ASEM exploits the fact that panel data are repeatedly measured which allows decomposing the variance of a variable into the true variance and the variance due to measurement error. We apply ASEM to estimate a hedonic housing model for urban Indonesia. To get insight into the consequences of measurement error and omitted variables, we compare the ASEM estimates with the outcomes of (1) a standard SEM, which does not account for omitted variables, (2) a constrained autoregression model, which does not account for measurement error, and (3) a fixed effects hedonic model, which ignores measurement error and time-varying omitted variables. The differences between the ASEM estimates and the outcomes of the three alternative approaches are substantial. 相似文献
108.
Abstract A procedure for continental‐scale mapping of burned boreal forest at 10‐day intervals was developed for application to coarse resolution satellite imagery. The basis of the technique is a multiple logistic regression model parameterized using 1998 SPOT‐4 VEGETATION clear‐sky composites and training sites selected across Canada. Predictor features consisted of multi‐temporal change metrics based on reflectance and two vegetation indices, which were normalized to the trajectory of background vegetation to account for phenological variation. Spatial‐contextual tests applied to the logistic model output were developed to remove noise and increase the sensitivity of detection. The procedure was applied over Canada for the 1998‐2000 fire seasons and validated using fire surveys and burned area statistics from forest fire management agencies. The area of falsely mapped burns was found to be small (3.5% commission error over Canada), and most burns larger than 10 km2 were accurately detected and mapped (R2 = 0.90, P<0.005, n = 91 for burns in two provinces). Canada‐wide satellite burned area was similar, but consistently smaller by comparison to statistics compiled by the Canadian Interagency Forest Fire Centre (by 17% in 1998, 16% in 1999, and 3% in 2000). 相似文献
109.
QuickBird satellite imagery acquired in June 2003 and September 2004 was evaluated for detecting the noxious weed spiny aster [Leucosyris spinosa (Benth.) Greene] on a south Texas, USA rangeland area. A subset of each of the satellite images representing a diversity of cover types was extracted and used as a study site. The satellite imagery had a spatial resolution of 2.8 m and contained 11-bit data. Unsupervised and supervised classification techniques were used to classify false colour composite (green, red, and near-infrared bands) images of the study site. Imagery acquired in June was superior to that obtained in September for distinguishing spiny aster infestations. This was attributed to differences in spiny aster phenology between the two dates. An unsupervised classification of the June image showed that spiny aster had producer's and user's accuracies of 90% and 93.1%, respectively, whereas a supervised classification of the June image had producer's and user's accuracies of 90% and 81.8%, respectively. These results indicate that high resolution satellite imagery coupled with image analysis techniques can be used successfully for detecting spiny aster infestations on rangelands. 相似文献
110.