首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   342篇
  免费   11篇
  国内免费   8篇
测绘学   3篇
大气科学   13篇
地球物理   111篇
地质学   92篇
海洋学   74篇
天文学   47篇
综合类   1篇
自然地理   20篇
  2021年   3篇
  2020年   2篇
  2019年   8篇
  2018年   4篇
  2017年   8篇
  2016年   11篇
  2015年   15篇
  2014年   12篇
  2013年   20篇
  2012年   11篇
  2011年   16篇
  2010年   21篇
  2009年   21篇
  2008年   17篇
  2007年   20篇
  2006年   24篇
  2005年   12篇
  2004年   15篇
  2003年   6篇
  2002年   8篇
  2001年   9篇
  2000年   13篇
  1999年   6篇
  1998年   4篇
  1997年   3篇
  1996年   4篇
  1995年   10篇
  1994年   6篇
  1993年   5篇
  1992年   4篇
  1991年   3篇
  1990年   5篇
  1989年   2篇
  1988年   5篇
  1987年   2篇
  1986年   2篇
  1985年   6篇
  1984年   3篇
  1983年   2篇
  1981年   1篇
  1979年   2篇
  1978年   2篇
  1977年   2篇
  1976年   2篇
  1975年   1篇
  1973年   1篇
  1972年   1篇
  1970年   1篇
排序方式: 共有361条查询结果,搜索用时 15 毫秒
191.
In the Tokyo metropolis many geological surveys are carried out in conjunction with building construction work and urban base improvement undertakings. Furthermore, the Institute of Civil Engineering (ICE) of the Tokyo Metropolitan Government (TMG) has been conducting surveys on urban geology, land subsidence, and geodetics. Thus, ICE of TMG keeps a lot of geological data. In order to plan for a more effective use of these data, the Geotechnical Data Information System of Tokyo Metropolitan Government was organized in 1985, and since 1986, it has become fully implemented.This Geotechnical Data Information System has incorporated a relational data base into a mainframe computer, the NEC ACOS System 430, and as of March 1989 it can retrieve and graphically present borehole, deep-well, and groundwater data.The authors wish to introduce in this article the organizational structure of the Geotechnical Data Information System of TMG, a summary of the data base system, standards of input data, and applicable examples of the data base.  相似文献   
192.
Coesite relics were discovered as inclusions in clinopyroxene in eclogite and as inclusions in zircon in felsic and pelitic gneisses from Higher Himalayan Crystalline rocks in the upper Kaghan Valley, north‐west Himalaya. The metamorphic peak conditions of the coesite‐bearing eclogites are estimated to be 27–32 kbar and 700–770 °C, using garnet–pyroxene–phengite geobarometry and garnet–pyroxene geothermometry, respectively. Cathodoluminescence (CL) and backscattered electron (BSE) imaging distinguished three different domains in zircon: inner detrital core, widely spaced euhedral oscillatory zones, and thin, broadly zoned outermost rims. Each zircon domain contains a characteristic suite of micrometre‐sized mineral inclusions which were identified by in situ laser Raman microspectroscopy. Core and mantle domains contain quartz, apatite, plagioclase, muscovite and rutile. In contrast, the rim domains contain coesite and minor muscovite. Quartz inclusions were identified in all coesite‐bearing zircon grains, but not coexisting with coesite in the same growth domain (rim domain). 206Pb/238U zircon ages reveal that the quartz‐bearing mantle domains and the coesite‐bearing rim were formed at c. 50 Ma and 46.2 ± 0.7 Ma, respectively. These facts demonstrate that the continental materials were buried to 100 km within 7–9 Myr after initiation of the India–Asia collision (palaeomagnetic data from the Indian oceanic floor supports an initial India‐Asia contact at 55–53 Ma). Combination of the sinking rate of 1.1–1.4 cm year?1 with Indian plate velocity of 4.5 cm year?1 suggests that the Indian continent subducted to about 100 km depth at an average subduction angle of 14–19°.  相似文献   
193.
— The unusual tsunami generated by the July 17, 1998 Papua New Guinea earthquake was investigated on the basis of various geophysical observations, including seismological data, tsunami waveform records, and on-land and submarine surveys. The tsunami source models were constructed for seismological high-angle and low-angle faults, splay fault, and submarine slumps. Far-field and near-field tsunamis computed from these models were compared with the recorded waveforms in and around Japan and the measured heights along the coast around Sissano Lagoon, respectively. In order to reproduce the far-field tsunami waveforms, small sources such as splay fault or submarine slump alone were not enough, and a seismological fault model was required. Relocated aftershock distribution and observed coastal subsidence were preferable for the low-angle fault, but the low-angle fault alone could not reproduce the large near-field tsunamis. The low-angle fault with additional source, possibly a submarine slump, is the most likely source of the 1998 tsunami, although other possibilities cannot be excluded. Computations from different source models showed that the far-field tsunami amplitudes are proportional to the displaced water volume at the source, and the comparison with the observed tsunami amplitudes indicated that the displaced water volume at the 1998 tsunami source was ~0.6 km3. The near-filed tsunami heights, on the other hand, are determined by the potential energy of displaced water, and the comparison with the observed heights showed that the potential energy was ~2 × 1012 J.  相似文献   
194.
 An experimental technique to make real-time observations at high pressure and temperature of the diamond-forming process in candidate material of mantle fluids as a catalyst has been established for the first time. In situ X-ray diffraction experiments using synchrotron radiation have been performed upon a mixture of brucite [Mg(OH)2] and graphite as starting material. Brucite decomposes into periclase (MgO) and H2O at 3.6 GPa and 1050 °C while no periclase is formed after the decomposition of brucite at 6.2 GPa and 1150 °C, indicating that the solubility of the MgO component in H2O greatly increases with increasing pressure. The conversion of graphite to diamond in aqueous fluid has been observed at 7.7 GPa and 1835 °C. Time-dependent X-ray diffraction profiles for this transformation have been successfully obtained. Received: 17 July 2001 / Accepted: 18 February 2002  相似文献   
195.
Several mafic rock masses, which have experienced eclogite facies metamorphism, are distributed in flat-lying non-eclogitic schists in an intermediate structural level (thermal core) of the Sanbagawa belt. The largest, Iratsu mass, and an associated peridotite, the Higashi-Akaishi mass, extend E–W for about 8 km, and N–S for about 3 km, and are surrounded by pelitic, basic and quartz schists. The Iratsu mass consists of metabasites of gabbroic and basaltic origin, with intercalations of ultramafic rocks, felsic gneiss, quartz schist and metacarbonate. The Iratsu mass can be divided into two layers along a WNW-trending metacarbonate layer. The Higashi-Akaishi mass consists of peridotite with intercalations of garnet clinopyroxenite. It is situated beneath the western half of the Iratsu mass, and their mutual boundary dips gently or steeply to the N or NE. These masses underwent eclogite, and subsequent epidote-amphibolite facies metamorphism as has been reported elsewhere. The Iratsu–Higashi-Akaishi masses and the surrounding rocks underwent ductile deformation under epidote-amphibolite facies (or lower PT) metamorphic conditions. Their foliation generally trends WNW and dips moderately to the NNE, and the mineral lineation mostly plunges to the N and NE. In non-eclogitic schists surrounding the Iratsu–Higashi-Akaishi masses, the foliation generally trends WNW and dips gently or steeply to the N or S and the mineral lineation mostly plunges to the NW, N and NE. Kinematic analysis of deformation structures in outcrops and oriented samples has been performed to determine shear senses. Consistent top-to-the-north, normal fault displacements are observed in peridotite layers of the Higashi-Akaishi mass and eclogite-bearing epidote amphibolite layers of the Iratsu mass. Top-to-the-northeast or top-to-the-northwest displacements also occur in non-eclogitic pelitic–quartz schists on the northern side of the Iratsu mass. In the structural bottom of the Iratsu–Higashi-Akaishi masses and to the south, reverse fault (top-to-the-south) movements are recognized in serpentinized peridotite and non-eclogitic schists. These observations provide the following constraints on the kinematics of the rock masses: (1) northward normal displacement of Iratsu relative to Higashi-Akaishi, (2) northward normal displacement of non-eclogitic schists on the north of the Iratsu mass and (3) southward thrusting of the Iratsu–Higashi-Akaishi masses upon non-eclogitic schists in the south. The exhumation process of the Iratsu–Higashi-Akaishi masses can be explained by their southward extrusion.  相似文献   
196.
197.
— We developed a 3-D simulation model for long-term crustal deformation due to steady plate subduction in and around Japan by incorporating viscoelastic slip-response functions into a realistic 3-D plate interface model, constructed on the basis of the topography of ocean floors and hypocenter distributions of earthquakes. The lithosphere-asthenosphere system is modelled by an elastic surface layer overlying a Maxwellian viscoelastic half-space. Kinematic interaction at plate interfaces is rationally represented by the increase of tangential displacement discontinuity (fault slip) across the interfaces. With this model, giving the steady slip rates at plate interfaces calculated from NUVEL-1A, we simulated long-term crustal deformation due to steady plate subduction in and around Japan. The simulated crustal deformation pattern is characterized by steep uplift at island arcs, sharp subsidence at ocean trenches and gentle uplift at outer rises. The numerical results show the strong dependence of the deformation pattern on the 3-D geometry of plate interfaces.  相似文献   
198.
In contrast to most other arcs with oceanic plate subduction, the Aegean arc is characterized by continent–continent subduction. Noble gas abundances and isotopic compositions of 45 gas samples have been determined from 6 volcanoes along the arc, 2 islands in the back-arc region and 7 sites in the surrounding areas. The 3He/4He ratios of the samples ranged from 0.027RA to 6.2RA (RA denotes the atmospheric 3He/4He ratio of 1.4×10−6), demonstrating that even the maximum 3He/4He ratio in the region is significantly lower than the maximum ratios of most oceanic subduction systems, which are equal to the MORB value of 8±1 RA. Regional variations in the 3He/4He ratio were observed both along and across the arc. The maximum 3He/4He ratio was obtained from Nisyros volcano located in the eastern end of the arc, and the ratio decreased westward possibly reflecting the difference in potential degree of crustal assimilation or the present magmatic activity in each volcano. Across the volcanic arc, the 3He/4He ratio decreased with an increasing distance from the arc front, reaching a low ratio of 0.063RA in Macedonia, which suggested a major contribution of radiogenic helium derived from the continental crust. At Nisyros, a temporal increase in 3He/4He ratio due to ascending subsurface magma was observed after the seismic crisis of 1995–1998 and mantle neon was possibly detected. The maximum 3He/4He ratio (6.2RA) in the Aegean region, which is significantly lower than the MORB value, is not probably due to crustal assimilation at shallow depth or addition of slab-derived helium to MORB-like mantle wedge, but inherent characteristics of the subcontinental lithospheric mantle (SCLM) beneath the Aegean arc.  相似文献   
199.
On December 12, 1992 a large earthquake (M s 7.5) occurred just north of Flores Island, Indonesia which, along with the tsunami it generated, killed more than 2,000 people. In this study, teleseismicP andSH waves, as well asPP waves from distances up to 123°, are inverted for the orientations and time histories of multiple point sources. By repeating the inversion for reasonable values of depth, time separation and spatial separation, a 2-fault model is developed. Next, the vertical deformation of the seafloor is estimated from this fault model. Using a detailed bathymetric model, linear and nonlinear tsunami propagation models are tested. The data consist of a single tide gauge record at Palopo (650 km to the north), as well as tsunami runup height measurements from Flores Island and nearby islands. Assuming a tsunami runup amplification factor of two, the two-fault model explains the tide gauge record and the tsunami runup heights on most of Flores Island. It cannot, however, explain the large tsunami runup heights observed near Leworahang (on Hading Bay) and Riangkroko (on the northeast peninsula). Massive coastal slumping was observed at both of these locations. A final model, which in addition to the two faults, includes point sources of large vertical displacement at these two locations explains the observations quite well.  相似文献   
200.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号